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Abstract 

Reservoir characterization for the lithological formation assesment is attempted in the Raniganj coalfield 
located in eastern part of India. Based on availability of 3 well logs and a two-dimensional post-stack seismic 
data, model-based post-stack seismic inversion is carried out to generate acoustic impedance section. 
Moreover, the seismic attributes obtained from the inversion are implemented in neural network 
architectures to map shale volume, Young’s modulus, and Poisson’s ratio. Error analysis between predicted 
and actual results demonstrates multi-layered feed-forward or probabilistic neural networks display a better 
result in obtaining reservoir parameters. The mapped reservoir section shows the acoustic impedance 
varying from 5000 to 16,000 (g/cc)*(m/s), shale volume ranging from 15% to 55%, Young’s modulus, and 
Poisson’s ratio varying from 0.5-9.5 GPa and 0.23-0.27 respectively. Cross-plot between Young’s modulus 
versus Poisson’s ratio classifies lithology from brittleness and it increases with depth. Neural network 
architectures help to identify the best model for delineating shale barriers for designing hydraulic fracturing 
treatments. Results from this study have added significant value to engineering applications and will help 
in ongoing coalbed methane exploration and future geomechanical studies. However, presence of cultural 
noise in seismic data adds limitations in resolving thin coal seams as the seismic resolution depends on 
the wavelength, velocity, and frequency of waves in the formation. 
 

Introduction 
 
The petrophysical parameters derived from the wireline log and seismic data provide sub-surface rock and 
fluid information. The log data are acquired in the depth domain whereas seismic data are recorded in the 
time domain. Both domains have some advantages and limitations. Well log data have higher resolution 
and provide less areal coverage whereas seismic data provides a much lower resolution with a greater 
areal extent. Therefore, combining well log and seismic data gives a finer description of reservoir properties 
on a wider scale (Hampson et al., 2001). The seismic section provides structural information about the fault 
and bedding plane but, the prime input for quantitative interpretation of subsurface formation is obtained 
from well log analysis and seismic inversion. Numerous seismic inversion methods are used such as 
maximum likelihood inversion, approximation computation, spars spike, band-limited impedance, Bayesian 
regularization, and model-based inversion. Among these methods, model-based inversion is widely used 
because it estimates the absolute acoustic impedance with greater correlation and maps the low-frequency 
content beyond the seismic band by using a bandpass filter (Mallick, 1995). Seismic inversion generates 
attributes by applying the mathematical transform that contains meaningful information and provides a 
better understanding of the reservoir properties. The geostatistical approach uses a linear relationship for 
integrating seismic attributes and reservoir parameters but it does not consider a non-linear relationship, 
whereas the application of neural network (NN) proves effective in dealing with the complex problem by 
using a non-linear relationship (Saggaf et al., 2003). Amongst numerous NN architectures developed, we 
are discussing multi-layered feed-forward neural network (MLFN) and probabilistic neural network (PNN) 
in this paper. However, the selection of the best model from several mathematical models with the same 
output remains the most crucial task for geoscientists. In the Raniganj basin, very limited studies are found 
in the literature related to mapping reservoir properties using seismic inversion and NN architectures with 
associated challenges. Hence, the main aim of the study includes (i) reservoir characterization from model-
based seismic inversion, (ii) mapping of reservoir properties using NN architectures, and (iii) geological and 
engineering analysis for implications of hydraulic fracturing treatments in reservoir development and, (iv) 
associated challenges and limitations in resolving of thin coal seams. 
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Geological Setting and Datasets of the study area 
 
Raniganj basin is part of peninsular India is mainly located in the state of West Bengal. The basin has an 
extension of 3000 km2 containing sediments of lower and upper Gondwana. Structurally the basin is 
elongated semi-elliptical in shape along the E-W direction and shows a typical half-graben configuration. 
The boundary and intrabasinal faults are the major faults in the basin (Ghosh, 2002). The Salma dyke 
observed and move towards NNW-SSE to NW-SE direction is a significant igneous intrusion that divides 
the basin into two equal parts (Figure 1). The formations from the bottom of the reservoir include Basement, 
Talchir, Barakar, Barren measure, Raniganj, Panchet, and Supra-Panchet (Banerjee and Chatterjee, 2021). 
The Raniganj basin hosts commercial coal deposits in both Barakar and Raniganj formations. The study 
area contains wells named W1, W2 and W3, and only one 2D post-stack time migration seismic section 
(S3) along the NW-SE direction is available. In both wells (W1 and W2), geophysical logs- gamma-ray 
(GR), resistivity (RES), P-wave slowness (DTC), and density (DEN) are recorded, while neutron (NEU) is 
has been recorded well W2. In another nearby well W3, both P-wave slowness (DTC) and S-wave slowness 
(DTS) are available. The coal seams are distinguished from other lithology based on cut-off criteria from 
geophysical well logs, and acoustic impedance (AI), Young’s modulus (E), and Poisson’s ratio (PR) derived 
from well log.tabulated in Table 1. 
 
Table 1. The distinction of lithology based on cut-off criteria based on well logs parameters and acoustic 
impedance (AI), Young’s modulus (E), and Poisson’s ratio (PR) derived from well log. 

Lithology GR 
(API) 

RES 
(Ohm-m) 

DEN 
(g/cc) 

NEU (v/v) P-wave 
(m/s) 

AI 
(g/cc*m/s) 

E 
(GPa) 

PR 

Coal 20-40 500-5000 1.4-1.8 0.50-0.70 2775-
4285 

5000-
6000 

0.5-
2.5 

0.26-
0.30 

Sandstone 55-65 45-70 2.5-2.6 0.08-0.1 2115-
4000 

5500-
10000 

2.5-
6.0 

0.22-
0.26 

Shale 115-160 25-30 2.55-2.6 0.32-0.33 3840-
6270 

10000-
16000 

7.0-
12.0 

0.16-
0.22 

Igneous 
intrusive 

100-200 5-15 2.6-2.8 0.13-0.22 3240-
3500 

8420-
9800 

1.5-
3.5 

0.20-
0.31 

 

 
Figure 1. Geological map of the study area representing the geological formation, seismic line, and wells. 

 

Methods 
 
The 2D seismic data acquired in the Raniganj basin is intensively covered with coal mines activities, thickly 
populated townships, villages, and other logistics. The data was acquired in symmetrical split spread 
geometry with shot interval 10m, receiver interval 5m with 300 receivers on both sides of the shot was 
designed for higher foldage of 150 and closer spatial sampling. The data was recorded for 6 seconds in a 
high-frequency spectrum of a 1 ms sampling interval. The recorded data quality in the entire area is 
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significantly affected by the presence of cultural noise that has been generated from man-made activities 
such as automobiles, electric lines, industrial activities, steel pipelines, trains, and highways. The 
methodology presented in figure 2 illustrates the estimation of reservoir parameters such as shale volume, 
Young’s modulus, and Poisson’s ratio from well log and seismic data by implementing model-based post-
stack seismic inversion and NN architecture. Also, the detailed steps followed in model-based post-stack 
seismic inversion are shown in the flowchart. The steps in the flowchart are described in the sub-sections. 
 

Parameters estimation 
 
The shale volume (Vsh) is determined from the GR log based on equation (Bateman, 1985): 

log min max min( ) / ( )
sh

V GR GR GR GR   ,        (1) 

where GRlog, GRmin, and GRmax are gamma-ray log magnitude in the formation (API units), clean sand, and 
shale. Young’s modulus is defined from the ratio of linear stress by strain and the ratio of transverse to axial 
strain determines Poisson’s ratio. In an isotropic homogeneous medium, dynamic Young’s modulus (E) and 
Poisson’s ratio (PR) in rocks are mathematically expressed as (Boonen, 2003): 
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where ρ represents the density of the formation. The limitations of Vs log are a constraint in obtaining 
dynamic relationships. Therefore, based on available data in a nearby well W3, a linear relationship 
between Vp (Km/s) and Vs (Km/s) is obtained with 0.84 as a fitting coefficient (R2) (Figure 3). The 
relationship between Vp and Vs is as follows: 
 
Vs = 0.587 * Vp – 0.0869,         (4) 
 

 
Figure 2. Flowchart of the study. 

 

 
Figure 3. Cross-plot between Vp (Km/s) versus Vs (Km/s) showing linear relationship. 
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Model-based seismic inversion 
Seismic inversion is a mathematical operation of converting reflected acoustic signal in the form of seismic 
trace, amplitude, and phase into the rock properties such as acoustic impedance (AI), velocity, and density. 
The transformation of seismic traces into earth reflectivity series is known as deconvolution (Austin et al., 
2018). Horizon separates rock layers with different depositional formations and reflection properties. The 
estimation of AI from the product of density and velocity provides details of reservoir characterization and 
the model-based inversion technique compensates for the loss of a low range of frequency components 
from the seismic data by creating an initial model applying a bandpass filter. The standard procedure in 
model-based inversion includes (i) wavelet estimation, (ii) seismic-to-well tie, (iii) horizon picking, (iv) initial 
model generation, (v) post-stack inversion analysis, and (vi) model-based inversion (Hampson et al., 2001). 
In figure 4a, the seismic section within 150-800 ms represents bed dips (10°-15°) from NW to SE direction, 
wells position (W1 and W2), picked horizons (H-I, H-II, H-III, H-IV), and a few identified faults (dashed lines).  

 
Figure 4. (a) 2D post-stack time migration seismic section within TWT 150-800 ms representing wells (W1 
and W2), picked horizons (H1, H2, H3, H4), and faults (dashed lines), (b) post-stack inversion analysis of 
well W1 and, (c) post-stack inversion analysis of well W2, representing the original log, inverted results, 
initial, model, and analysis window. 

 
 

The acquisition of seismic data in a particular frequency band has missing components of both low and 
high frequency. The low-frequency components contain useful information about the fluid and porosity in a 
reservoir which is necessary for obtaining better resolution during the inversion process. The impedance 
estimation of the initial model is absolute and sensitive to low-frequency components. Therefore, the use 
of a high-cut filter 10/15 Hz fills the missing frequency in the process of building an initial low-frequency AI 
model and interpolates along the horizon between the wells. In figure 5, the wavelet time and frequency 
response are compared between the seismic and the inverted data in the zone of interest from horizon H1 
to H4. Figures 5a and 5b illustrate the amplitude spectrum in the time and frequency axis. The frequency 
of seismic data ranges from 20-120 Hz, while the inverted spectrum in figures 5c and 5d show the 
improvement in the frequency range containing dominant frequency below 10 Hz due to the application of 
a high-cut filter. The minimum misfit between the inverted synthetic and original log is necessary to optimize 
the inversion parameter of the seismic model at well locations. The best fit parameter gives a higher 
correlation between the inverted synthetic and original log data. The inversion analysis provides the final 
and best fit from the range of test parameters before initiating the inversion process in the seismic volume. 
In figures, 4b and 4c, the comparison between synthetic traces obtained from the inversion result with the 
input seismic trace, shows the correlation coefficient of 0.99 and 0.97 and measured error of 0.13 and 0.24 
in well W1 and W2, respectively. Seismic attributes are the mathematical transformation of seismic trace 
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data. In this study, seismic attributes derived from post-stack inversion results, and petro-physical attributes 
obtained from well log data are used simultaneously. Subsequently, the seismic inversion attributes are 
integrated with petrophysical attributes to generate linear multivariate regression followed by non-linear NN 
methodology. The NN architecture provides better cross-correlation with reduced error compared to 
multivariate regression. Out of numerous seismic attributes generated, only a few contain meaningful 
information about reservoir properties and are useful in deriving petrophysical parameters by implementing 
NNs. 
 

Neural network model 
The attributes required to obtain NN models are distinguished into target attributes, training attributes, and 
final attributes. Attributes such as shale volume, Young’s modulus, and Poisson’s ratio as target attributes, 
and seismic inversion attributes are used as training attributes. A few examples of training attributes 
(inverted results) are quadrature trace, absolute amplitude, instantaneous frequency, instantaneous 
frequency, and many more. Hence, the specific training attributes having maximum cross-correlation, and 
minimum training and validation error becomes final attributes. The attributes with the minimum difference 
between training and validation error are considered for the estimation of shale volume, Young’s modulus, 
and Poisson’s ratio. Here, the same training data and attributes are tested in MLFN and PNN networks 
keeping W1 as training well and W2 as blind well for validation.  
 

 
Figure 5. The wavelet time and frequency response are compared between the seismic and the inverted 
data in the zone of interest from horizon H1 to H4. (a) Amplitude spectrum versus time response of seismic 
data, (b) Amplitude spectrum versus frequency response of seismic data, (c) Amplitude spectrum versus 
time response of inverted seismic data and, (d) Amplitude spectrum versus frequency response of inverted 
seismic data. 
 
The MLFN model consists of input, hidden, and output layer, where all layer constitutes a particular number 
of nodes that are connected with weights (Leiphart and Hart, 2001). The training in MLFN from well log 
data develops optimal weight between nodes, which yields the desired output. The weight is updated using 
the conjugate gradient optimization technique with a back-propagation procedure, the expression for the 
calculation of output layer: 

2 1

0 0

1 1

n n

i i j ij i

j i

Y f f x   
 

  
    
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  ,                         (5) 

Where Y and x are the output and input parameters, α and β act as connecting weights, n1 and n2 exhibit 
the dimension of the input vector and the number of hidden neurons. α0 and β0j are known as bias weights. 
The transfer function used in MLFN is a sigmoid function (f) and the common form of the function is: 

1
( )

1 a
sigmoid a

e



 ,                             (6) 

Where the value of “a” ranges between 0 and 1. The developed MLFN networks (1, 3, 5) consist of 70 input 
nodes linking 7 hidden nodes with 150 conjugate-gradient iterations that yield a single output layer. The 
cross-correlation measures the similarity between actual and predicted results.  
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The PNN architecture is a mathematical interpolation scheme that replaces the sigmoid transfer function in 
MLFN with an exponential function. PNN consists of input, pattern, summation, and output layer. The PNN 
is understood much better than MLFN by examining the mathematical expression in the analysis windows 
of the training data set consisting of a series of seismic samples and wells, where PNN represents the 
current output log in a linear combination of the log magnitude in the training data (Hampson et al., 2001). 
The current log magnitude L(x) is formulated as: 
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D(x, xi) denotes the distance between the input and each training point (xi) in multi-dimensional space, n is 
training examples from m attributes, Li is the measured target log values, σj is the smoothing parameter in 
the training of the network. The prediction error is controlled by the parameters σj which is minimized by 
applying a nonlinear conjugate gradient algorithm. Here, PNN networks (2, 4, 6) are tested with 25 
smoothing parameters ranging from 0.1 to 3.0 comprising 100 iterations.  
 

Results and Discussions 

 
The cross-correlation, training, and validation error of MLFN and PNN networks compares the actual and 
predicted results for shale volume (Figure 6a and 6b), Young’s modulus (Figure  6c and 6d), and Poisson’s 
ratio (Figure 6e and 6f) is tabulated in table 2. Analysis from table 5 and figure 5 emphasizes that the MLFN 
model using networks-1 and 5 gives better results in shale volume and Poisson’s ratio estimation (Figure 
6a and 6e) whereas the PNN model uses network-4 yields effective Young’s modulus output (Figure 6d). 
In the best shale volume, Young’s modulus, and Poisson’s ratio model, cross-correlation are 0.86, 0.96 and 
0.85, training error are 0.09, 0.49 GPa and 0.01, validation error are 0.11, 0.92 GPa and 0.01, respectively.  
 
Table 2. Comparison of six networks by implementing NN architectures in the estimation of the volume of 
shale, Young’s modulus, and Poisson’s ratio. 

Estimated shale volume (Vsh) models 

Network Type Cross-correlation Training error Validation error 

Network-1 MLFN 0.86 0.09 0.11 

Network-2 PNN 0.8 0.1 0.12 

Estimated Young's modulus (E) models 

Network Type Cross-correlation Training error Validation error 

Network-3 MLFN 0.88 0.82 GPa 1.57 GPa 

Network-4 PNN 0.96 0.49 GPa 0.92 GPa 

Estimated Poisson's ratio (PR) models 

Network Type Cross-correlation Training error Validation error 

Network-5 MLFN 0.85 0.01 0.01 

Network-6 PNN 0.80 0.01 0.01 
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Figure 6. Cross-correlation between (i) actual and predicted shale volume (Vsh) mapping using (a) network-
1 (MLFN) (b) network-2 (PNN); (ii) actual and predicted Young’s modulus (E) mapping using (c) network-3 
(MLFN) (d) network-4 (PNN) and; (iii) actual and predicted Poisson’s ratio (PR) mapping using (e) network-
5 (MLFN) (f) network-6 (PNN). 
 
The AI section distinguishes coal, shale, and sandstone and identifies the top of the Barakar and Talchir 
formations. The relatively thicker coal seam (30-40 m) is better distinguished in the AI section compared to 
the thinner coal seam (1-10 m). In figure 7a, the color codes show AI ranges from 5000 to 16,000 
(g/cc)*(m/s) in the reservoir. In shale, AI varies from 10000-16000 (g/cc)*(m/s), mix of sandstone and shale, 
it ranges from 5500-10000 (g/cc)*(m/s), and in coal, AI ranges from 5000-6000 (g/cc)*(m/s). The green 
color represents coal and the red/blue color represents lithology with higher shale content, while the yellow 
represents the mix of shale and sand. The best-mapped sections within 150-800 ms are represented in 
figures 7b, 7c, and 7d, respectively. The section in figure 7b shows the shale volume distribution from 15% 
to 55%.  In coal, shale, and sandstone the distribution of shale volume is 15-20%, 30-35%, and 15-30% 
respectively. In figure 7c, Young’s modulus ranges from 0.5 to 9.5 GPa, and it varies from 0.5-2.5 GPa, 
6.5-9.5 GPa, and 4.0-6.0 GPa in coal, shale, and sandstone. In figure 7d, the Poisson’s ratio ranges from 
0.23 to 0.27, wherein coal, shale, and sandstone vary from 0.26-0.27, 0.23-0.25, and 0.24-0.26. The 
Young’s modulus versus Poisson’s ratio cross-plot in figure 8 classifies the coal, shale, and mix of 
sandstone and shale formations encircled based on brittle and ductile behaviour shown from (a) well log 
(W1 and W2) and (b) seismic section. Figure 8 illustrates the linear increase in brittleness with the increase 
in depth, as Young’s modulus increases and Poisson’s ratio decreases. The low Poison’s ratio (0.23-0.24) 
and high Young’s modulus (6.5-9.5 GPa) are brittle formations, that are relatively hard and rigid, which is 
seen in the shale formation whereas formations with a high Poisson’s ratio (0.26-0.27) and low Young’s 
modulus (0.5-2.5 GPa) are ductile with soft characteristics, which is observed in coal. The intermediate-
range of Poisson’s ratio (0.24-0.26) and Young’s modulus (4.0-6.0 GPa) are formations containing a mix of 
sandstone and shale. The presence of higher shale volume in overlying and underlying coal seams acts as 
a good shale barrier due to its higher compressive strength and lower permeability for restricting the 
hydraulic fracturing fluid movement beyond the coal seam. High stiffness in the shale can withstand higher 
stress during hydraulic fracturing fluid injection. Thus, the demarcation of the shale layers provides 
information about continuity and extension. Young’s modulus is associated with matrix shrinkage that 
affects the porosity, permeability, gas recovery rate, and in-situ stress condition of the coalbed methane 
reservoir. The seismic resolution depends on the wavelength, velocity, and frequency of seismic waves in 
the formation. However, the thinner coal seams are not effectively distinguishable in the section as the 
lower acoustic impedance of coal leads to higher reflectivity of acoustic waves from beds and lesser 
transmissivity to the sub-surface layer; and Rayleigh’s limiting criteria for vertical resolution, where bed 
thickness is less than one-fourth the dominant wavelength cannot be resolved, hence bed thickness less 
than 10.0 m is not resolved. Moreover, the presence of cultural noise significantly affects the data quality.  
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Figure 7. (a) Post-stack acoustic impedance (AI) inversion section representing AI magnitude ranging from 
5000 to 16,000 (g/cc)*(m/s). (b) Shale volume (Vsh) distribution of MLFN model from 15-55 % in a reservoir. 
(c) Young’s modulus (E) distribution of PNN model from 0.3-20 GPa in a reservoir. (d) Poisson’s ratio (PR) 
distribution of MLFN model from 0.23-0.27 in a reservoir. 
 

 
Figure 8. Poisson’s ratio Vs. Young’s modulus’s cross-plot in the reservoir illustrates the encircled lithology 
of coal, shale, and a mix of shale and sandstone shown from (a) well log (W1 and W2) and (b) seismic 
section. 
 
CONCLUSIONS 
 
The following conclusion from the study are: 
(1) Reservoir characterization using a model-based seismic inversion technique is attempted in the basin 
having data constraints. Based on acoustic impedance contrast the lithology is distinguishable in the 
reservoir, however, limitation exists in resolving thin coal seams that mainly depends on the frequency of 
seismic wave controlled by the geological factors. The use of seismic inversion attributes is vital in 
estimating reservoir properties and development planning for drilling successful wells and effective 
reservoir management. 
(2) The application of non-linear relationships in the neural network provides effective results with minimum 
error. The best result selection depends on the cross-correlation between observed and predicted 
parameters of either MLFN or PNN models. The quantitative estimation of properties like modulus, and 
brittleness will provide crucial input for designing the hydro-fracturing job in the future for optimizing the gas 
production from this reservoir. Moreover, the derived reservoir properties from this study will help in further 
geomechanical analysis. 
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