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Abstract 

This paper is concerned essentially with understanding the Leverett J function as an expression of an 
intrinsic property of the pore space of rocks by which different rocks can be compared, irrespective of 
their bulk porosity and permeability.  Since NMR data is the only type of data which comes closest to 
expressing the principal attributes of the pore space of rocks in a natural way, modelling the Leverett J 
function would be a productive way of attaining a quantitative physical understanding of the Leverett J 
function as an attribute of the pore structure of rocks. In this paper two approaches, (one of which is 
based on the fractal model of pore space) to the modelling of the Leverett J Function using NMR data 
are presented. Two ways of deriving a saturation height function are also demonstrated. 

1.1 Introduction 

Consider an intrusion experiment where non-wetting fluid replaces wetting fluid. Consider a stage of 
intrusion where the wetting fluid saturation is 𝑆𝑤, and the capillary pressure is  𝑃𝐶(𝑆𝑤).  Let 𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝑤) 
denote threshold radius for wetting fluid saturation of 𝑆𝑤 Let the interfacial tension and the angle of 

contact be denoted as 𝜎, 𝜃, respectively.  

Let 𝑉𝑝(𝑟) denote the distribution of the incremental pore-volume over the value of the pore radius 𝑟. 

𝑉𝑝(𝑟)  is defined by the equation, 

𝑑𝑉𝑝(𝑟, 𝑟 + 𝑑𝑟) = 𝑉𝑝(𝑟)𝑑𝑟                                                                                                                         (1)  

Here, 𝑑𝑉𝑝(𝑟, 𝑟 + 𝑑𝑟) denotes the number of pores per unit rock volume, whose radius lies within the 

interval (𝑟, 𝑟 + 𝑑𝑟). Let 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 and �̅� respectively stand for the minimum pore radius the maximum 
pore radius and the mean pore radius for the assemblage of pores. Let 𝜑 denote the value of the pore 
volume per unit rock volume (porosity). 

�̅� =
∫ 𝑟𝑉𝑝(𝑟)𝑑𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

∫ 𝑉𝑝(𝑟)𝑑𝑟
𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

=
1

𝜑
∫ 𝑟𝑉𝑝(𝑟)𝑑𝑟

𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛
                                                                                                              (2) 

Let 𝑘 denote the value of the permeability of the rock. The following relation can be shown to hold 

between �̅�, 𝑘, 𝜑: 

�̅� = 𝐶√
𝑘

𝜑
 where 𝐶denotes the quantity (

1

√8

1

𝜏
) and 𝜏 is the hydraulic tortuosity of pore space.              (3)                                                                                                        

Let 𝑆𝑤𝑚 denote the wetting fluid saturation at that stage of intrusion, when the value of the threshold 

radius is �̅�. 

We have, using Washburn’s Equation (Washburn, 1921), and where 𝜆 stands for the representative 
value of the ratio of the pore radius to the pore throat radius: 

𝑃𝐶(𝑆𝑤) = 𝜆
2𝜎𝑐𝑜𝑠𝜃

𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝑤)
                                                                                                                           (4) 

𝑃𝐶(𝑆𝑤𝑚) =
2𝜎𝑐𝑜𝑠𝜃

�̅�
𝜆 =

2𝜆𝜎𝑐𝑜𝑠𝜃

𝐶
√

𝜑

𝑘
                                                                                                              (5) 

The last equality in equation (5) arises from equation (3). 

We have from equations (4), (5): 

𝑃𝐶(𝑆𝑤)

𝑃𝐶(𝑆𝑤𝑚)
=

�̅�

𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝑤)
                                                                                                                              (6) 



 
 
 

 

The quantity (
�̅�

𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝑤)
) is a function of solely, the wetting fluid saturation 𝑆𝑤 and the pore structure 

of the rock, and is independent of 𝜑 the value of the porosity of the rock. Let 𝐹(𝑆𝑤) denote this function.  

𝐹(𝑆𝑤) =
�̅�

𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝑤)
=

𝑃𝐶(𝑆𝑤)

𝑃𝐶(𝑆𝑤𝑚)
                                                                                                                (7) 

𝐹(𝑆𝑤) relates 𝑃𝐶(𝑆𝑤𝑚) to 𝑃𝐶(𝑆𝑤) through: 

𝑃𝐶(𝑆𝑤) = 𝑃𝐶(𝑆𝑤𝑚)𝐹(𝑆𝑤)                                                                                                                         (8) 

We have, substituting for 𝑃𝐶(𝑆𝑤𝑚) from equation (5) into equation (8): 

𝑃𝐶(𝑆𝑤) =
2𝜆𝜎𝑐𝑜𝑠𝜃

𝐶
√

𝜑

𝑘
𝐹(𝑆𝑤)                                                                                                                      (9) 

Equation (9) rearranges to: 

𝜆

𝐶
𝐹(𝑆𝑤) =

𝑃𝐶(𝑆𝑤)

2𝜎𝑐𝑜𝑠𝜃
√

𝑘

𝜑
                                                                                                                                (10) 

The function 
𝑃𝐶(𝑆𝑤)

2𝜎𝑐𝑜𝑠𝜃
√

𝑘

𝜑
  is called as the Leverett J-Function denoted as 𝐽(𝑆𝑤) defined as: 

 𝐽(𝑆𝑤) =
𝑃𝐶(𝑆𝑤(𝑟))

2𝜎𝑐𝑜𝑠𝜃
√

𝑘

𝜑
                                                                                                                               (11) 

It can be noted that the RHS of equation (10) above is nothing but 𝐽(𝑆𝑤). Thus, 

𝐽(𝑆𝑤) = 
𝜆

𝐶
𝐹(𝑆𝑤) = √8𝜆𝜏

�̅�

𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝑤)
                                                                                                     (12)  

Equation (12) the physical meaning of the Leverett 𝐽 Function can be understood that the function 
expresses how the radius of the largest undrained radius at a given wetting-fluid saturation, scales with 
reference to the mean pore radius associated with the pore space, as the wetting fluid saturation varies. 
It is a function which is a reflection of the pore structure of the rock, because, the quantities that define 
this function, as portrayed at the RHS of the last equality in equation (12), can vary between any two 
given rocks only when the pore-size distribution and the pore structure of the two rocks differ. 
𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝑤) is purely a reflection of the pore structure of the rock. �̅� reflects the pore volume distribution 

over the pore radius, for a rock, 𝜏 the tortuosity associated with the pore space of a rock is an expression 
of the pore structure of the rock. The value of 𝜆 the representative pore size to pore throat size, can be 
equal between two rocks only when their pore structures are very similar. Thus, Leverett J function 
represents an attribute of pore space by which rocks of different bulk porosity and permeability can be 
compared. Rocks which have the same J function are essentially equivalent from the perspective of the 
pore space. This paper is concerned with quantitatively understanding this attribute through modelling 
this attribute using NMR log data which is essentially expressive of the pore size distribution and the 
pore size to pore throat ratio, when considered along with the bulk properties of the porosity and 
permeability of the pore space of a rock.  

1.2 Modelling the Leverett J-Function using NMR log data 

We have, 
1

𝑇2
= 𝜌

𝑆

𝑉
+

1

𝑇2𝐵
+

𝐷(𝛾𝐺𝑇𝐸)2

12
≅ 𝜌

𝑆

𝑉
                                                                                                (13)  

(Coates et al, 2000; Pape et al, 2006) 

Here, 𝜌 stands for the transverse relaxivity of the grain surface, 𝑆, 𝑉 respectively stand for the cumulated 
wetted surface area of the grains and the total pore volume, of the rock. 𝑇2𝐵 stands for the bulk 

transverse relaxation time of the pore fluid. 𝐷 stands for the coefficient of diffusion of the pore fluid. 𝛾 

stands for the gyromagnetic ratio of the proton. 𝐺, 𝑇𝐸  respectively stand for the magnitude of the gradient 
of the static magnetic field and the value of the inter-echo spacing employed for the acquisition of NMR 
echoes.   

The approximation indicated at equation (13) is valid for rocks which have negligible grain dissolution 
porosity and fractures, and where the NMR data acquisition parameters are the normal field gradient 



 
 
 

 

and inter-echo spacing parameters employed. A further requirement, assumed to be satisfied by the 
rocks on which the application of the methodology of modelling the Leverett J-Function is discussed 

here, is that the pore fluid is liquid, so that the value of 𝐷 is not too high. This ensures that interpore 
diffusive coupling of spins is low enough so as to not interfere with the rendering of the pore level 
surface area to volume ratio distribution of the rock, by the 𝑇2 distribution. Let ∝ denote the shape factor 
of the pores, which in the present context would have the value 3.0, assuming spherical / approximately 
spherical pore shape assumed in this paper employing the fractal model of the pore space (see below). 
We have: 

𝛼

𝑟
= (

𝑆

𝑉
)

𝑝𝑜𝑟𝑒
                                                                                                                                            (14) 

 Let 𝑇2(𝑟) denote the value of 𝑇2 associated with a pore class differentiated by the pore radius having 

magnitude around 𝑟. Equation (14) implies: 

𝑇2(𝑟) =
𝑟

𝛼𝜌
, 𝑟 = 𝛼𝜌𝑇2                                                                                                                           (15) 

The NMR 𝑇2 distribution is the distribution of the pore volume over 𝑇2. This distribution, denoted by 

Ψ(𝑇2) is defined, where 𝑑𝑉𝑃 is pore volume hosted by pores of 𝑇2-value within (𝑇2, 𝑇2 + 𝑑𝑇2), by 

𝑑𝑉𝑃 = Ψ(𝑇2)𝑑𝑇2.                                                                                                                                   (16) 

The mean value of 𝑇2is defined as the pore volume weighted average of 𝑇2 and is denoted by the 
symbol 𝑇2𝑚𝑒𝑎𝑛. 𝑇2𝑚𝑒𝑎𝑛 is defined by: 

𝑇2𝑚𝑒𝑎𝑛 =
∫ 𝑇2Ψ(𝑇2)𝑑𝑇2

𝑇2𝑚𝑒𝑎𝑛
𝑇2𝑚𝑒𝑎𝑛

∫ Ψ(𝑇2)𝑑𝑇2
𝑇2𝑚𝑒𝑎𝑛

𝑇2𝑚𝑒𝑎𝑛

                                                                                                                      (17) 

1.2.1 Modelling the Leverett J-Function with no prior model of pore size 
distribution assumed 

Consider a stage of an intrusion experiment where the the maximum value of the radius of the drained 
pores at that stage of intrusion is 𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . This wetting phase saturation, denoted as 𝑆𝑤(𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is:  

 𝑆𝑤(𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) =
∫ Ψ(𝑇2)𝑑𝑇2

𝑇2=𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝛼𝜌⁄

𝑇2=𝑟𝑚𝑖𝑛 𝛼𝜌⁄

∫ Ψ(𝑇2)𝑑𝑇2
𝑇2=𝑟𝑚𝑎𝑥 𝛼𝜌⁄

𝑇2=𝑟𝑚𝑖𝑛 𝛼𝜌⁄

                                                                                                    (18) 

Using the notation 𝜓(𝑇2) = ∫ Ψ(𝑇2)𝑑𝑇2
𝑇2

𝑇2𝑚𝑖𝑛
, 𝑇2𝑚𝑖𝑛 , 𝑇2𝑚𝑎𝑥 denoting the minimum and maximum limits of 

𝑇2 in the distribution. Further, �̅� is the pore volume weighted average pore radius. We then have, 

𝑇2𝑚𝑖𝑛 =
𝑟𝑚𝑖𝑛

𝛼𝜌
                                                                                                                                           (19) 

 𝑇2𝑚𝑎𝑥 =
𝑟𝑚𝑎𝑥

𝛼𝜌
                                                                                                                                         (20) 

𝑇2𝑚𝑒𝑎𝑛 =
  �̅̅�

𝛼𝜌
                                                                                                                                           (21) 

Equation (18) can be stated, in light of equations (19), (20) as: 

𝑆𝑤(𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) =
∫ Ψ(𝑇2)𝑑𝑇2

𝑇2(𝑟)
𝑇2𝑚𝑖𝑛

∫ Ψ(𝑇2)𝑑𝑇2
𝑇2𝑚𝑎𝑥

𝑇2𝑚𝑖𝑛

=
𝜓(𝑇2)

𝜓(𝑇2𝑚𝑎𝑥)
=

𝜓(𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝛼𝜌⁄ )

𝜑𝑁𝑀𝑅
                                                                    (22)  

The subscript ‘𝑁𝑀𝑅’ in 𝜑𝑁𝑀𝑅 in equation (20) indicates that the quantity is the estimate of the porosity 
by the NMR data. The LHS of equation (22) is the wetting phase saturation as per NMR data. The last 
equality of equation (22), follows from the fact that 𝜓(𝑇2𝑚𝑎𝑥) is equal to 𝜑𝑁𝑀𝑅.  

Since the function 𝜓 is readily evaluated from the NMR 𝑇2 distribution as seen from the above analysis, 
the RHS of equation (22) is readily evaluated for any given value of 𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Thus, the function  

𝑆𝑤(𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is readily evaluated from NMR 𝑇2 distribution using equations (19) – (22). Note that  𝜓 is 

a known function, at this point, and hence, the function 𝜓−1 is also determined at this point. Therefore, 

the function 𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝑤)  is also determined, through the inversion of equation (22) as, 



 
 
 

 

𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝑤) = 𝛼𝜌𝜓−1(𝜑𝑁𝑀𝑅𝑆𝑤)                                                                                                           (23) 

Now, the value of 𝑇2𝑚𝑒𝑎𝑛 is readily evaluated from NMR 𝑇2 distribution using equation (17) and �̅� is 
therefore evaluated using equation (19) as: 
�̅� = 𝛼𝜌𝑇2𝑚𝑒𝑎𝑛                                                                                                                                        (24) 

Substituting for �̅�, 𝑟(𝑆𝑤) from equations (24), (23) into equation (12) and simplifying: 

 𝐽(𝑆𝑤) = 𝐽(𝑆𝑤) =
𝜆

𝐶

1

𝜑𝑁𝑀𝑅

𝛼𝜌𝑇2𝑚𝑒𝑎𝑛

𝜓−1(𝜑𝑁𝑀𝑅𝑆𝑤)
                                                                                                      (25) 

 Equation (25) is also stated as: 

𝐽(𝑆𝑤) =
√8𝜆𝜏

𝜑𝑁𝑀𝑅

𝛼𝜌𝑇2𝑚𝑒𝑎𝑛

𝜓−1(𝜑𝑁𝑀𝑅𝑆𝑤)
                                                                                                                      (26) 

1.2.2 Modelling the Leverett J-Function assuming a fractal model of pore space 

The pores are assumed to be of spherical shape or of a shape approximating to a spherical shape, and 
so, projecting as circles on a plane section. The number of circles on a plane section whose radius 
exceeds a given value 𝑟 would scale with respect to the value of 𝑟 chosen, as (Yu and Li, 2001; Yu and 
Cheng, 2002): 

𝑛(> 𝑟) = 𝜁 (
𝑟𝑚𝑎𝑥

𝑟
)

𝐷𝑓
                                                                                                                              (27)  

Here, the LHS stands for the number of circles per unit area of the plane section referred to above, 
whose radius exceeds 𝑟. 𝜁 is a constant and 𝐷𝑓 is the fractal dimension of the distribution.  

Let 𝑛(𝑟) denote the number density distribution of the pores distributed over 𝑟. Let 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 denote the 
minimum and maximum pore radius within the pore space respectively. 

It is noted, using equation (27) that:  

𝑛(𝑟)𝑑𝑟 = 𝑛(> 𝑟) − 𝑛(> 𝑟 + 𝑑𝑟) = 𝜒𝐷𝑓𝑟−𝐷𝑓−1𝑑𝑟 where 𝜒 = 𝜁(𝑟𝑚𝑎𝑥)𝐷𝑓                                                 (28)                                                              

It is a pre-requisite of fractal models supposed to be applicable to modelling pore space, that the 
maximum pore dimension is much larger than the minimum pore dimension. This stipulation, (which is 
concisely stated as the condition (𝑟𝑚𝑎𝑥 𝑟𝑚𝑖𝑛⁄ ) ≫ 1,  is met with, for the case of most of the porous rocks.  

The wetting fluid saturation at any stage of an intrusion experiment, when the threshold radius is 
𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is given by: 

𝑆𝑤(𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) =
∫

4

3
𝜋𝑟3𝑛(𝑟)𝑑𝑟

𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑟𝑚𝑖𝑛

∫
4

3
𝜋𝑟3𝑛(𝑟)𝑑𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

                                                                                                           (29)  

Substituting for 𝑛(𝑟)𝑑𝑟 from equation (28) in equation (29) and simplifying, 

𝑆𝑤(𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) =
∫ 𝑟

2−𝐷𝑓𝑑𝑟
𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑟𝑚𝑖𝑛

∫ 𝑟
2−𝐷𝑓𝑑𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

=
𝑟

3−𝐷𝑓−𝑟𝑚𝑖𝑛
𝑟

3−𝐷𝑓

𝑟𝑚𝑎𝑥
𝑟

3−𝐷𝑓
−𝑟𝑚𝑖𝑛

𝑟
3−𝐷𝑓

                                                                         (30) 

Since, 𝑟𝑚𝑎𝑥 ≫ 𝑟𝑚𝑖𝑛 equation (30) can be stated as: 

𝑆𝑤(𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) = (
𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑟𝑚𝑎𝑥
)

3−𝐷𝑓
                                                                                                                (31) 

We have, from the definition of mean pore radius and the assumption of spherical to near spherical 
pore shape: 

�̅� =
∫ 𝑟

4

3
𝜋𝑟3𝑛(𝑟)𝑑𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

∫
4

3
𝜋𝑟3𝑛(𝑟)𝑑𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

=
∫ 𝑟

4

3
𝜋𝑟3𝜒𝐷𝑓𝑟

−𝐷𝑓−1
𝑑𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

∫
4

3
𝜋𝑟3𝜒𝐷𝑓𝑟

−𝐷𝑓−1
𝑑𝑟

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

= (
3−𝐷𝑓

4−𝐷𝑓
) (

𝑟𝑚𝑎𝑥
4−𝐷𝑓−𝑟𝑚𝑖𝑛

4−𝐷𝑓

𝑟𝑚𝑎𝑥
3−𝐷𝑓−𝑟𝑚𝑖𝑛

3−𝐷𝑓
)                                             (32)                                                                                        

(Since, as per equation (28),  𝑛(𝑟)𝑑𝑟 = 𝜒𝐷𝑓𝑟−𝐷𝑓−1). Further, since 𝑟𝑚𝑎𝑥 ≫ 𝑟𝑚𝑖𝑛, equation (32)  

can be simplified to the approximate relation: 



 
 
 

 

�̅� = (
3−𝐷𝑓

4−𝐷𝑓
) 𝑟𝑚𝑎𝑥                                                                                                                                     (33) 

Equation (33) can be stated, using equations (29), (20) as: 

�̅� = 𝛼𝜌 (
3−𝐷𝑓

4−𝐷𝑓
) 𝑇2𝑚𝑎𝑥                                                                                                                              (34) 

Equation (32) implies, 

𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑆𝑤) = 𝑟𝑚𝑎𝑥𝑆𝑤

−(3−𝐷𝑓)
= 𝛼𝜌𝑇2𝑚𝑎𝑥𝑆𝑤

−(3−𝐷𝑓)
                                                                                  (35)  

The last equality in equation (35) arises from equation (20). 

Substituting for �̅� from equation (34) and for 𝑟(𝑆𝑤) from equation (35) into equation (12) and simplifying, 
we get, 

𝐽(𝑆𝑤) =
𝜆

𝐶
(

3−𝐷𝑓

4−𝐷𝑓
) 𝑆𝑤

(3−𝐷𝑓)
= √8𝜏𝜆 (

𝐷𝑓

𝐷𝑓−1
) (Since,𝐶 =

1

√8

1

𝜏
)                                                                               (36)  

The modelling of 𝐽(𝑆𝑤) is still incomplete because, the value of 𝐷𝑓 is unknown. A method of evaluating 

𝐷𝑓 is discussed now. Consider equation (21) and equation (31). It is assumed that the wetting fluid 

saturation computed from NMR data using equation (21) is a good estimate of the wetting fluid 
saturation, and so is the computed wetting fluid saturation computed as per equation (31) based on an 
analysis which assumes the fractal model of pore space. Therefore, the LHS of equations (22), (31) 
can be considered as representing the same saturation and hence that the LHS of the two equations 
can be equated. We then have, 

𝜓(𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝛼𝜌⁄ )

𝜑𝑁𝑀𝑅
= (

𝑟𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑟𝑚𝑎𝑥
)

3−𝐷𝑓
                                                                                                              (37a) 

Equation (37a) can be stated for the generalized pore radius variable, as: 

𝜓(𝑟 𝛼𝜌⁄ )

𝜑𝑁𝑀𝑅
= (

𝑟

𝑟𝑚𝑎𝑥
)

3−𝐷𝑓
                                                                                                                           (37b) 

Using equations (15), (19), equation (37b) is stated as: 

𝜓(𝑇2)

𝜑𝑁𝑀𝑅
= (

𝑇2

𝑇2𝑚𝑎𝑥
)

3−𝐷𝑓
                                                                                                                               (38) 

Taking logarithms on both sides of equation (38) and rearranging: 

log 𝜓(𝑇2) − log 𝜑𝑁𝑀𝑅 = (3 − 𝐷𝑓) log (
𝑇2

𝑇2𝑚𝑎𝑥
) + log 𝜑                                                                              (39) 

Equation (39) suggests that a plot of log 𝜓(𝑇2) against log (
𝑇2

𝑇2𝑚𝑎𝑥
) should be a straight-line having slope 

(3 − 𝐷𝑓) and intercept log 𝜑𝑁𝑀𝑅. The value of the fractal dimension 𝐷𝑓 is found by making the plot 

mentioned for different values of 𝑇2. Once  𝐷𝑓 is evaluated as above, all parameters in the RHS of 

equation (34) are evaluated and hence the 𝐽 function is evaluated for any given value of the wetting 

fluid saturation 𝑆𝑤.  

1.3 Modelling the Saturation – Height Function using NMR data 

From equation (22), 𝑆𝑤(𝑟(𝑃𝐶)) =
𝜓(𝑟 𝛼𝜌⁄ )

𝜑𝑁𝑀𝑅
=

ξ(𝑃𝐶) 

𝜑𝑁𝑀𝑅
 (say) (𝑟 = 𝜆

2𝜎𝑐𝑜𝑠𝜃

𝑃𝐶
). Since the form of the function 𝜓 is 

known, the equation above, defines a saturation - height function.                                                 

From equation (31), 𝑆𝑤(𝑟(𝑃𝐶)) = 𝑆𝑤(𝑃𝐶) = (
𝑃𝐵

𝑃𝐶
)

3−𝐷𝑓
. This equation defines a saturation – height 

function as 𝑃𝐵 = 𝜆
2𝜎𝑐𝑜𝑠𝜃

𝑟𝑚𝑎𝑥
 is known as 𝑟𝑚𝑎𝑥 can be obtained from the NMR 𝑇2 distribution, and the value 

of  𝐷𝑓 is known. 

 



 
 
 

 

1.4 Discussion 

The two approaches demonstrated for modelling Leverett J-Function respectively culminate in equation 
(26) and equation (36) respectively. 𝜑𝑁𝑀𝑅 , 𝑇2𝑙𝑜𝑔𝑚𝑒𝑎𝑛 are standard outputs of NMR data post-processing. 

The best estimate of 𝑇2𝑚𝑎𝑥 is the 𝑇2𝑙𝑜𝑔𝑚𝑒𝑎𝑛 of the 95-percentile of the 𝑇2 distribution (Ramamoorthy et 

al 2006). The representative value of 𝜆 is obtained by comparing the 𝑇2 distribution with the pore throat 
size distribution computed from MICP data and computing the logarithmic shift required to be applied 

on the 𝑇2 distribution for it to match the MICP data-derived pore throat size distribution (Coates et al, 

2006; Coates et al, 1991). The procedure indicated above is to be carried out on the data of equivalent 
formation against which both NMR data and the MICP data are available on core plugs. In case 
laboratory NMR data is not available the NMR log based 𝑇2 distribution can be used. The value of 𝜌 is 
determined from laboratory NMR investigation on core plugs of the rock / rock type for which the 
Leverett J-Function is modelled. Dividing the value of 𝜆𝜌 referred to above, by the value of 𝜌 determined 

in the laboratory as referred to above, gives an estimate of the value of 𝜆 the pore size to pore throat 

size ratio applicable for the modelling of the Leverett J-Function. The value of 𝜏 the tortuosity associated 
with the pore space of the rock can be obtained using the relation: 

𝜏2 = 𝐹𝜑                                                                                                                                  (43) 

Here, 𝐹 stands for the electrical formation factor of the rock. The quantity 𝐹𝜑 estimates the value of the 
square of the electrical tortuosity of the pore space. Equation (43) is based on the assumption that the 
value of the hydraulic tortuosity of the pore space of a rock is well estimated by the value of the electrical 
tortuosity of the pore space of the rock. 

1.4 Conclusions 

 Two methods of modelling the Leverett J-Function using NMR data are demonstrated 

 Two methods of computing the Saturation - Height Function using NMR data are demonstrated 

 A perspective of the Leverett J-Function in terms of gross attributes of the pore space has been 
explored. 
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