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Abstract

We present a workflow for the simultaneous inversion of multiple angle stacks to derive models of

elastic properties of the subsurface. These elastic properties are used as input for estimating lithology

and fluid probability models using Bayesian classification. Interpretation using Bayesian classification

reduces the user bias and makes the process more data driven and robust. A real example from West

Tryal Rocks, Western Australia shows that uncertainty associated with facies classification due to

overlap of elastic properties of different facies can be efficiently quantified using probabilistic

interpretation under framework of Bayesian inferences.   

 Introduction

Subsurface geological models serve different purposes in the various stages of life of an oil and gas

field, i.e. exploration, appraisal, development and production. Typical applications range from

structural interpretation, prospect ranking, reserve estimation, planning appraisal and development

well locations, and mapping bypassed pay as well as fluid movement for reservoir management. One

major task of a subsurface geoscience team is to generate realistic geological models to serve the

above objectives using multi-measurement data and a multidisciplinary approach. Commonly used

datasets for generating these geological models are well logs and surface seismic besides geological

concepts and knowledge of depositional setup. Seismic reservoir characterization methods

comprising deterministic inversion- whether separate or simultaneous- integrate the information from

seismic amplitude or amplitude variation with offset (AVO) and well measured acoustic/elastic

properties like acoustic and shear velocities along with density to yield the best subsurface model. As

the seismic data is band limited in nature, we require low frequency elastic properties, viz. acoustic

impedance (AI), shear impedance (SI) or the ratio of acoustic and shear velocities (Vp/Vs) to derive

the corresponding absolute values which can be subsequently used as input to estimate reservoir

properties like porosity, volume of clay and water saturation under a framework of Rock Physics. In

general, low frequency models are built using interpolation of the filtered well logs through a

structural-stratigraphic framework using interpreted horizons and faults and knowledge of depositional

setting. Seismic velocities are quite often used as trends for the low frequency model. Lithology,

porosity and fluid content are key parameters required for decision making at various stages of

exploration, appraisal and development. It is also important to know the uncertainty associated with

these parameters to assess the risk involved while using these properties in decision making.

Interpretations of attributes derived from inversion results play important roles assessing the

uncertainty as well as in quantifying it. The conventional techniques to interpret inversion results

using cross-plot zones or histogram ranges of elastic properties to differentiate amongst various

facies are quite subjective. These methods ignore the overlap of elastic properties of different facies

and, thus, fail to account for the uncertainty in the interpretation which could be avoided through

probabilistic interpretation of the results. Here, we present a novel workflow that not only circumvents

the subjectivity in interpretation stated above and also captures the uncertainty in the interpretation of

results. We propose the use of the time-honoured principle of Bayesian Inference that relates prior

knowledge about an event with the likelihood of the event to estimate posterior probability or

knowledge. In the present context, the stated event is the simultaneous inversion and prior knowledge

is the facies distribution computed from petrophysical properties at the In Bayesian classification, we



train a data set using elastic logs and interpreted facies. We generate probability density functions

(pdfs) for different facies and validate the interpretation at the well locations. Once we get a good

training set with acceptable validation, we apply these trained pdfs on the full volumes of inverted

elastic properties in order to generate probability volumes for different facies. We apply this to a data

set from West Tryal Rocks, Australia (Figure 1). Results from the simultaneous inversion of multiple

seismic angle stacks, viz. Acoustic impedance and Vp/Vs have been interpreted in terms of facies

probability volumes. The inverted acoustic impedance and Vp/Vs is also transformed into porosity

using multi attribute regression for particular sand, M.

Figure 1: The Study area- Location of West Tryal Rocks.

Geology of the area

We follow Meath and Bird (1976) to describe the geology of the area and history of discovery. West

Tryal Rocks gas field is located offshore at the western margin of the Barrow Sub-basin, in the

Carnarvon Basin of Western Australia. It was discovered by West Australia Petroleum Pty Ltd in 1973

on a South Westerly extension of the Rankin Platform where, farther north, a number of major

gas/condensate discoveries have been made by Burmah Oil Company of Australia Ltd since

1971.The productive structure at West Tryal Rocks lies at a depth of 3200 m in about 150 m of water.

It consists of an elongate north-trending uplifted block of Triassic and possibly Lower Jurassic

reservoir rocks called the Mungaroo beds. The block is unconformably capped by the Lower

Cretaceous Muderong Shale which also provides the lateral seal across the bounding faults. The

reservoir section dips to the north at a greater rate than does the sealing unconformity so that

progressively younger pre-Cretaceous sediments subcrop the unconformity in that direction. Shales of

Middle to Late Jurassic age in the Barrow Sub-basin to the East are believed to be the primary source

of hydrocarbons, although the overlying Muderong Shale cannot be ruled out (Playford and

Johnstone, 1959).The sands are mainly medium to very coarse grained and possess good porosity

and permeability. Preliminary reserve estimates indicate that the field contains in excess of 28 x 109

m3 of gas.

The West Tryal Rocks gas field is unique compared to the other Northwest Shelf fields, in that it is

slightly overpressured and contains up to 28% of non-combustible gases-predominantly carbon

dioxide and nitrogen. Additionally, the field possesses relatively fresh underlying formation waters with

high concentrations of bicarbonate ions. There are 5 sand packs M, N, O, QRS and T as per the

geological model. M sand is the major gas saturated pack and encountered in 3 wells.

Data and Methodology

Data available for the present study comprises of 3D partial angle stacks in the depth domain and

basic logs in 3 wells, including acoustic wave along with the structural interpretation. The depth

domain partial angle stacks are converted into time domain using the processing velocity. An angle

range from 8-53 degree is present in partial stacks. The 53 degree stack is discarded because of the

poor S\N ratio. The time domain angle gather are compensated for AVO offset scaling. Angle gathers

need to be conditioned in an AVO friendly manner in order to improve the signal-to-noise ratio within



the zone of interest between the M and T sand packs. The gather is further processed to flatten the

events within the zone of interest in order to capture the correct amplitude variation with angle. The

seismic is of reverse polarity i.e. increase in impedance is represented by a trough in the seismic

signature. The seismic zone is further analysed for the bed resolution. Tuning thickness within the

zone of interest is 35 m, hence we can resolve the top and base of thickness 17.5m from deterministic

inversion. The M sands present in the area can be resolved using the deterministic inversion

methodology. The objective of this work is to delineate the M sand hydrocarbon probability

distribution. The workflow used in this study is shown in Figure 2.

Figure 2: Workflow for seismic and well data conditioning, inversion and interpretation.

Out of the 3 wells available for this study 1 well has a recorded shear sonic log. A rock physics model

is established on this well with a good prediction of elastic logs. This rock physics model is used in the

other 2 wells to predict the missing shear sonic logs. With this, we have conditioned seismic angle

gather, 3 wells with sonic, shear sonic, density logs and interpreted logs in terms of water saturation,

porosity, volume of clay and facies log as shown in Figure 3.
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Figure 3: Measured and interpreted logs in well 4. Panels from left to right represent gamma ray,

resistivity, water saturation, effective porosity, volume of shale, lithology derived from petrophysical

properties, acoustic velocity, shear velocity, density and P-impedance respectively.

Figure 4: Well to seismic tie for Well 4(a) and its inversion analysis (b).

A good well to seismic tie is obtained for 3 wells using a statistical wavelet of 180 degree phase as

shown in figure 4(a). Low frequency models for all three elastic properties to derive P-impedance,

Vp/Vs and density are created using filtered elastic logs interpolated in the area guided by the

structural interpretation. 

Pre-stack inversion analysis is performed at the well locations in order to optimize the parameters for

inversion as shown in Figure 4(b). Once the inversion parameters are optimized at the well locations,

inversion is run onto the entire area in order to generate acoustic and shear impedances.

Results

Figure 5 shows the seismic data, inverted acoustic impedance and Vp/Vs along an arbitrary line

passing through the three wells. Gamma ray in the wells is overlaid on the seismic track and

measured P-impedance and Vp/Vs in the wells have been overlaid on their respective tracks for

better comparison. The results show that both acoustic impedance and Vp/Vs derived from match

quite well at the well location. 

Figure 5: An arbitrary line passing through the three wells showing the seismic stack (top) acoustic

impedance (middle) and Vp/Vs (bottom). Gamma ray, acoustic impedance and Vp/Vs logs from wells

are overlaid on the respective sections.

Interpretation of these elastic attributes is the key point here. We are using the facies log from

petrophysical interpretation for estimating prior lithofacies probabilities, to be used in Bayesian

classification. We trained the elastic logs using facies at the well locations in order to generate
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probability density functions (pdfs) for the different lithologies, hydrocarbon (HC) sands, brine sand

and shale as shown in Figure 6. A detailed methodology is given in Nieto, Delbecq, and Batlai (2013).

Figure 6: Probability distribution functions pertaining to the training dataset and validations in terms of

prediction at the wells.

Litho-log Classified logs (in percentage, %)

Hydrocarbon Sand Brine Sand Shale

Hydrocarbon Sand 74.6 24.7 0.7

Brine Sand 3.4 92.3 4.3

Shale 0.4 17.2 82.4
Table 1: Confusion matrix indicating the facies classification. The off-diagonal elements represent

misclassifications of facies. For very good performance of the scheme, the off-diagonal elements

should tend to zero.

This training data is validated at the well locations using a confusion matrix (Table 1). The confusion

matrix is a very quantitative method of understanding how many samples of a lithology are correctly

interpreted and how many samples of this lithology are wrongly interpreted as another facies. We

derived a pdf with reasonable validation at the well location. These pdf’s are then applied onto the

entire dataset in order to generate facies probability distributions and a most-probable facies volume

as shown in Figure 7. The HC sand probability and most-probable facies section shows the

distribution of HC sand probability and most-probable facies in the section passing through all well

locations. These probability models are in line with the geological model of sand distribution.



Figure 7: Bayesian classification results showing HC sand probability and most-probable facies with

gamma ray curve overlaid on section

In order to compare the results from seismic amplitude interpretation and elastic attributes

interpretation using facies probability, maps from these different results have been prepared as shown

in Figure 8. In addition to the facies interpretation, the inverted acoustic impedance and Vp/Vs is also

transformed into Porosity within the M sand using multi attribute regression (Hampson, Schuelke, and

Quirein, 2001). A comparison of seismic amplitude, elastic attribute, predicted porosity and

hydrocarbon sands probability is shown in Figure 8.

Figure 8: Shows the maps for seismic amplitude (a), acoustic impedance (b), Porosity(c) and HC 

sands probability (d) for M sand.

The seismic RMS amplitude map Figure 8(a) shows a high amplitude anomalous body in the area

which coincides with low acoustic impedance region (b) delineating this anomalous body more clearly.

Figure 8(c) shows the porosity distribution for M sand. The HC sand probability (d) shows the

distribution of HC sand probability in the area. This reduces the uncertainty of seismic amplitude

interpretation and thus aides in precise well placement.

Conclusions

We used Bayesian classification to derive the probability of hydrocarbon facies from Simultaneous

Inversion of seismic data from the West Tryal Rocks gas field. Multi attribute regression using

acoustic impedance and Vp/Vs have been used to derive porosity. Results show that there is

significant benefit progressing from seismic amplitude interpretation to elastic attributes, Bayesian

classification and multi attribute regression for porosity generation. We also showed that Bayesian

classification is a more refined approach for the quantification of uncertainty in interpretation and

removes user subjectivity. The probability volumes for different facies from Bayesian classification

reduce the risk and uncertainty in the results of inversion interpretation. The interpretation of all the

attributes derived from seismic, elastic attributes from simultaneous inversion and facies probability

volumes from Bayesian classification help in determining the precise spatial distribution of reservoir

facies, thereby reducing risks in well placement.
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