Interplay between local tectonics and deepwater channel process in the Mahanadi Deepwater Offshore Basin: Insight from high resolution 3D seismic

*Pradipta Kumar Das \& Sachidananda Misra, MBA Basin, ONGC Ltd., Kolkata.
E-mail: *pradipta_reena@yahoo.com; chennaimisra@gmail.com

Abstract

Deepwater channels act as conduits for coarse-grained sediment, connecting the outer shelf to the basin floor bypassing the lower slope and often serve as important hydrocarbon reservoir targets in many deepwater offshore basins around the world. Although deepwater channels are widely observed in 3D seismic datasets routinely, the detailed mechanism for channel processes and their evolutionary behavior has got sparse attention in literature. The present study brings out how local tectonics can play a major role influencing the subtle channel process itself and more precisely how it can trigger in the meandering and incision of the main channel course by a contemporaneous interplay between tectonics and channel building process. The study is based on an interpretation of a high resolution 3D Q-marine seismic data set in one of the deepwater hydrocarbon exploration blocks of the Mahanadi Basin in the East Coast of India.

Unlike 2D seismic data, 3D seismic reflection data is an ideal tool to study the complex process of channel building, channel course meandering, its overall morphological geometry, the channel fill type and also the possible link between local tectonics and evolution of the entire channel process. One of the Miocene channels in the study area displays characteristic meandering geometry and channel incision almost contemporaneous with strike-slip compressional structuring in the area. Sequential analysis of time structure maps along with detailed analysis of seismic facies in the channel complex through seismic attributes suggest the intricate relationship between how turbidity flow along a deepwater channel can incise and erode as a response to the structuring process caused by contemporaneous strike-slip compressional forces. The episodic nature of such structure building in the area can be seen to have resulted in some typical deepwater deposits anomalously distinct from the surrounding area.

Introduction

Mahanadi Basin, located in the northeastern part of eastern passive continental margin of India, falls in between Bengal basin to the northeast and Krishna Godavari basin to the southwest (Fig. 1). The present study area falls in one of the deepwater blocks of the basin, situated approximately 200 km south of Chilka Lake. The bathymetry ranges from 2200 m to 2550 m . General geology \& hydrocarbon prospects of Mahanadi basin is comprehensively dealt by Fuloria (1993).

Objective

The present study was primarily aimed at understanding from interpretation of 3D seismic data, one of the mechanisms how a particular deepwater channel is affected by local tectonics and its impression on the sedimentary record almost contemporaneous with channel incision and sedimentary deposition under deepwater condition. The delicate manner in which strike-slip compressional forces cause an anticlinal structure to form alongside which a deepwater channel can erode, incise and fill was sequentially studied as a tectono-sedimentary evolutionary process in this case.

Seismic mapping and analysis

In the absence of any actual drilled well information in the study area, seismic horizons were tied through available regional 2D seismic data in the area with the drilled well information of one deepwater well of Mahanadi Basin which is about 180 kms to the further north and with few KG Basin wells in the southwest. Subsequently, detailed seismic mapping and analysis of one full 3D seismic volume (more than $300 \mathrm{sq} . \mathrm{km}$) of Q-marine PSTM data were carried out in IIWS. Part of the results of this interpretation work forms the main basis of the present study.

Fig. 1 Location details of the study area.
The high resolution Q-Marine 3D seismic data is quite amenable to interpretation of various deepwater depositional elements from TWT structure and thickness maps, time slices, horizon slices, various seismic attribute maps etc. One representative seismic section (Fig. 2) has been presented showing the main correlated sequences and subsequences in the study area. However, the exact biostratigraphic age of these units can be ascertained only when actual drilled well information is available. Although numerous channel features are seen in the 3D data set at several stratigraphic levels within Tertiary, the present study focuses on one particular deepwater channel in the Upper

Miocene sequence by critically analyzing the seismic anatomy of its geometry and evolution.

(b) Older section

Fig. 2 Representative seismic section showing the correlated sequences in the study area.
Discussion on TWT structure contour maps at various Tertiary levels

To study the evolution of the structural disposition of the study area particularly during the Tertiary period, all the major Tertiary sequences, starting from top Paleocene all the way to mid-Pliocene were mapped and studied in detail. Few such maps relevant to this paper are presented in Fig. 3. TWT structure map close to Paleocene top (Fig. 3a) shows the contour trend to be almost $\mathrm{N}-\mathrm{S}$, increasing gradually in contour values from West to East. There is a broad E-W trending low trend which is flanked by a NW-SE trending high trend in the east of this major low causing a swing to the south in the contours defining the broad low. Contour trend shows not much variation in the western part of the study area with monoclinally dipping contours. The TWT map on top of Eocene (Fig. 3b) shows a similar trend as that of top Paleocene event with comparatively less closely spaced monoclinally dipping contours in the western part of the study area gradually deepening to the east. There is a big low trend running almost East-West with a small high nosing making the contours swing $\mathrm{N}-\mathrm{S}$ at the extreme eastern part of the study area in much the same way as that of Paleocene level map. The TWT maps on top of Oligocene \& Mio4 (not shown here) show almost identical behaviour like the Eocene level map.
TWT structure map at Mio3 level (Fig. 3c), the next younger level to Mio4, shows once again similar contour trend to Mio4 level with one small difference. The small
high which was an independent structural closure just north of the major E-W trending low at Paleocene level (Fig. 3a) and also seen at Eocene level (Fig. 3b) reappears distinctly as another independent closure at Mio3 level with a slight shift to the east indicating some sort of structural reactivation. The NW-SE trending high nosing at Paleocene level to the east of the major low was also seen to exist, albeit with lesser relief, at all younger levels viz. Eocene, Oligocene, Mio4 but now almost disappears at Mio3 level.

(c) On top of Mio3

Fig. 3 TWT structure maps on top of several major Tertiary sequences and sub-sequences.
There is then a distinctly different trend in the TWT structure maps at still younger levels, i.e., at Mio2 (Fig. 3d) and Miol (Fig. 3e) levels. A close study of the TWT structure maps (Figs. 3a to 3e) of the above horizons progressively from older to younger sequences suggests how a very broad E-W trending low with wide spaced contours in major part of the study area except only at the
western edge is transformed into an anticlinal structure with plunging trend on either side to the north and south of the area where earlier the broad low existed (Figs. 3d \& 3e). The broad central E-W trending low now appears to be dissected by the N-S trending high (Figs. 3d \& 3e). The maximum structural deformation is clearly seen at Mio2 horizon (Fig. 3d) with a distinctly N-S running anticlinal high having two separate culminations and the earlier broad low now has its residual impression on either side to the east and west of this doubly plunging anticlinal high. The northern culmination is the larger one in size and relief compared to the southern one.
The TWT structure maps at Plio5 \& Plio4 levels (not shown here) are similar to that of Miol horizon. However, the independent structural culmination loses its trace by the time of Plio3 (Fig. 3f) although general high contour trend still exists. In summary, it can be said that the structural deformation was maximum at around Mio2-Mio1 time and the same structure continues to exist till Plio4 time and then slowly disappears from the time of Plio3.

How and when the structure was formed?

The following discussion is aimed at explaining the possible geological history that led to the formation of this major structure in the study area. In fact this structure can be seen to have affected even the Paleogene section also. One representative seismic section is presented in Fig. 4 which shows the anticlinal feature affecting almost the whole of Tertiary section from Paleocene up to Plio4 level.
If we analyse the same vertical seismic section as above flattened at Mio2 top horizon (Fig. 5a), we can see that the structure did not exist up until Mio2 period. At around Mio 1 period (as seen from Fig. 5b showing the same section flattened at Mio1 level), perhaps, the structure started forming. This is observed from the overall shape of the Miol horizon at a time when there was massive channel erosion triggered perhaps by the formation of the structure at around this period. The thinning of the section just above the Miol horizon seen right at the structural crest (Fig. 4) is the strong evidence for timing of structuring to be around end of Mio1 or beginning of Plio5. On the contrary, the deeper Middle Miocene section between Mio2 and Mio3 clearly shows thickening at this position. The same seismic section has been flattened at Plio5 horizon and presented in Fig. 5c. There is a clear indication that by this time, during the deposition of Plio5 sub-sequence, the structure has already formed.

Fig. 6 (a) \& 6(b) show the TWT thickness maps of Mio2 \& Miol sequence. A close look at the Figs. 6 (a \& b) demonstrate unequivocally how the structural inversion has taken place in this area. The TWT thickness map (Fig. 6a) shows a progressive increase of thickness to the east and southeast with considerable thickness of sediments along an E-W trending depositional low during Mio2 time of deposition. The seismic section in Fig. 4 also shows the increasing trend of thickness and the maximum thickness is observed at the central portion of the study area as is clear from Fig. 6a. The TWT thickness map presented in Fig. 6b shows that the same area where there was maximum thickness trend is now the minimum thickness area suggesting that during Mio1 deposition, the area has
become positive and this is the strongest evidence of how structural inversion has taken place. This structural inversion has been caused by strike slip compressional forces and the contour trend of both TWT structure maps at Mio1 and Mio2 level as well as their thickness maps suggest that strike-slip compression in the study area has been along the NE-SW trend and this major compressional event has had a definite impression on the structural history of the area. This is further explained from closer analysis of seismic sections as given below.

Fig. 4 Representative seismic line showing the anticlinal structure affecting the entire Tertiary section.

Sequence between Oligocene and Mio4 is relatively flat characterised by high amplitude reflectors without much thickness variation (Fig. 4) along with the sequence between Mio4 and Mio3 showing similar trend but characterised by much lesser amplitude reflectors. However, the section just above that from top Mio3 to top Mio2 shows increasing thickness from north to south.

(a)Flattened at Mio2 horizon.

(b)Flattened at Miol horizon.

(c) Flattened at Plio5 horizon.

Fig. 5 Seismic section (of Fig. 4) flattened at different levels to explain the timing of structuring. At the time of deposition of Mio2 sequence, there was no perceptible tectonics but at around Miol level, there is active tectonics forming the structure along with channel incision which is more prominent by Plio5 time as seen from the flattened section at Plio5 level.

Though major extensional faults are not observed in the study area, but small throw (10 ms) along normal fault is clearly seen as shown along one representative Inline (Fig. 7). These faults are more indicative of subtle structural forces coming into play during sedimentation history in the area rather than defining basin-scale major structural features.

(a) TWT thickness map of Mio2 (top Mio3-top Mio2).

(b) TWT thickness map of Miol (top Mio2-top Miol). Fig. 6 TWT thickness map of Miol and Mio2 sequences.
The figures 8 a and 8 b show the seismic Inlines only 125 m and 325 m away from the representative Inline of Fig. 7. While Fig. 8a shows a small anticlinal feature at the level where earlier there was normal fault (at around 5300 ms to 5600 ms), Fig. 8 b shows a reverse fault at the same location. Thus figures 6 to 8 demonstrate that there has been initial thickening of sedimentary pack (between Mio2 top \& Mio3 top). Later tectonics have caused normal sense of throw and reverse sense of throw at the same level only few hundreds of meters away. The fault in the Inline (of Fig. 7) is a fault having normal sense of throw down to SE and is expressed as a small anticlinal structure in another Inline just 125 meters away finally turning into a fault with clearly a reverse sense of throw as seen in the Inline 325 meters away from the first Inline. This confirms that there is clear cut evidence of strike-slip compression which has affected the study area locally. The structural analysis, although shown in minute seismic scale here for clear understanding, has however its link to the genesis of the major four way structural closures found in several Tertiary levels as already discussed. Detailed analysis of the 3D data shows presence of another similar compressional structure around the southwestern part of the study area as described in the previous section on TWT structure contour maps (Figs. 3d to 3 f).

Fig. 7 Representative Inline showing normal sense of throw to the right of the line (SE direction) along a small normal fault.

Morphology and evolution of the deepwater channel in Upper Miocene sequence

Deepwater channels act as conduits for coarse-grained sediment, connecting the outer shelf to the basin floor and bypassing the lower slope. In plan view, the morphology of channels varies from straight to highly sinuous (Weimer \& Slatt, 2007). The study area displays large nos. of channellevee complexes in deepwater setting all through the Upper Tertiary including Miocene and Pliocene sequences. To delineate the channel morphology and to understand the evolution of one particular channel complex in Upper Miocene sequence, amplitude attribute has been extracted at Mio2 horizon and corresponding coherency attribute has also been generated. Fig. 9 shows the amplitude and coherency attribute maps for Mio2 surface taken within a window of (-40 ms to +10 ms). The amplitude attribute map (Fig. 9a) shows two prominent channel complexes at this level, one trending in general along NNE-SSW direction towards the northern \& western part of the study area and the other one in NE-SW direction towards the central \& southern part of the study area. The former one has a sharper image with an interesting kidney shaped body with very low amplitude fill characteristics sitting at one of the sharp bend of the meandering channel. This channel traverses from north of the study area with a sinuous
geometry towards south and ends up at the western edge of the study area. The same channel outline can be seen in the coherency attribute map also (Fig. 9b). Although the isolated body has low amplitude fill compared to the surrounding, it is surmised that the body has been deposited by a channel that has a clear cut erosional base perhaps cut by a canyon through the high amplitude parallel reflectors representing distal basin floor fine grained shales or hemi pelagic mud.

(a) Inline showing a small anticlinal structure at the same level where there was normal fault 125mts away.

Fig. 8 (b) Inline showing reverse sense of throw only another 13 lines' (325 mts) distance away from the Inline where earlier normal sense of throw was seen.

The interesting fact about this isolated kidney shaped body is that it is located almost at the same place where the large four-way structural closure in Miocene and Pliocene levels is encountered. To illustrate this further, in one such figure, the amplitude attribute map (of Fig. 9) has been superimposed with the TWT structure contour map at Miol level (shown in Fig. 10a) and with that of Mio2 surface (Fig. 10b). As was discussed earlier, perhaps this could be a relatively low area with a high turbidity current and at the meandering bend, caused by the evolving positive structure at this place in response to the strike-slip compressional forces acting contemporaneously; the peculiar kidney shaped body (fan?) got deposited. It is possible, as discussed earlier, during the time when the compressional forces was instrumental in creating a positive area, the turbidity current
along the channel course caused incision and erosion of the channel beds (Fig. 11) and also significantly, the channel course took a meandering turn almost around the western edge of the rising high (refer to figs. 3d \& 3e).

(b) Coherency attribute

Fig. 9 Seismic attribute maps for Mio2 surface (window: 40 ms to +10 ms).

Fig. 10 (a) Average Absolute Amplitude attribute map for Mio2 surface (window: -40 ms to +10 ms) superimposed with the TWT structure contour map on top of Miol Surface.

(b) AAA attribute map for Mio2 surface superimposed with the TWT structure contour map on Mio2 surface.

Conclusions

- The 4-way structural closures at Miocene and Pliocene levels that have been mapped in the study area seem to be associated with exactly the same locations where channel sands are expected. The structural model for generation of these structures is considered to be due to strike-slip compressional event affecting almost the entire Tertiary section and the timing of this event is possibly Upper Miocene - Lower Pliocene period.
- The deepwater channel at Mio2 level in the study area shows characteristic incision and erosion followed by deposition through infilling. The channel shows a meandering geometry around the western edge of an evolving structure as a response to the positive structure formation caused by strike-slip compressional forces and establishes how local tectonics can play a significant role in the channel morphology and its evolution.

Acknowledgements

The authors express their deep sense of gratitude to management of ONGC Ltd for their kind permission to publish this paper. The encouragement and support provided by Shri P. Mukhopadhyay, DGM (Geology) and Block Manager, Mahanadi Block during the study is thankfully acknowledged. His critical comments and queries have motivated our own self reviewing process to a great extent for arriving at geologically more plausible answers. The highly constructive and fruitful technical discussions with Shri B.G.Samanta, DGM (Geology) and Block Manager, Andaman Block regarding the interplay between tectonics and sedimentation has immensely helped in consolidation of some of the new ideas espoused in this paper.

(a) Inline showing channel incision.

(b) Trace showing channel incision.

Fig. 11 Characteristic seismic signature of the deepwater channel. Note the channel incision and erosion of some units (missing reflectors)...

References

1. Fuloria, R.C., 1993, Geology and Hydrocarbon Prospects of Mahanadi Basin, In: Proceedings of Second Seminar on Petroliferous Basins of India (Eds: Biswas et. al), vol. I, p 355-355.
2. Unpublished well completion reports of ONGC Ltd of Mahanadi and KG Deepwater offshore basins.
3. Weimer, Paul, and Slatt Roger M., 2007, An introduction to Petroleum Geology of Deepwater Settings, AAPG Studies in Geology.
