Source potential and oil-source correlation in Olpad Formation of Ahmedabad-Cambay-Tarapur blocks of Cambay Basin, India

Neelam Niranjan, S. K. Jain, Anita Gupta, Leena John, Sudeepta Sen and A. K. Gupta, Regional Laboratory, WOB, ONGC, Vadodara-390009, India

Abstract

Petroleum prospects of Olpad Formation still remain a challenging area to explorationists. To meet this challenge, it is imperative to know depositional pattern and paleo-structural conditions of Olpad Formation for identification of reservoir facies. In margin areas, juxtaposition with effective source rock may account for hydrocarbon accumulation in Olpad Formation. In the basinal part however, prospectivity will depend upon generative capacity of source within Olpad Formation itself. Therefore, in the present work source potential of the Olpad Formation has been assessed in the area.

In the eastern side, thick source sequences with moderate potential to generate hydrocarbons have developed in drilled sections of Indrora and Gamij fields and these are immature to early mature. In the west, Sanand-C has encountered 280m excellent mature source rock. In central part of the basin, Wadu-A has about 230m, Kalol-D has 160m and Wadsar-A has 90m source rock with fair generation potential and the sequences are at peak maturation state. As the central part has already generated hydrocarbons, original potential might have been much higher than seen at present.

In Cambay Tarapur Block, Olpad Formation in general does not show source characteristics except in Piswada-A and Indernaj-A which have (305m and 80m) fair to excellent source unit in catagenetic stage.

Thus in basinal part, adequate source is present for charging reservoirs within Olpad Formation. Oil in eastern margin has migrated up dip from low in the west.

Introduction

Exploratory efforts in post rift sequences of Cambay Basin have been quite successful in establishing in place reserves. To convert balance prognosticated resources, attention needs to be paid to deeper prospects of Olpad Formation, which comprises thick synrift sediments derived from Deccan Trap. Nawagam field of Ahmedabad Block is producing from Olpad Formation since its discovery in 1963. But after that, success has met only in a few wells in eastern margin and petroleum prospects of Olpad Formation still remains a challenging area to explorationists. To meet this challenge, it is imperative to know depositional pattern and paleo-structural conditions of Olpad Formation. Depositional pattern will provide an insight of favourable areas for development of quality reservoir facies and likely entrapment of hydrocarbons. These reservoir facies will be prospective for hydrocarbon accumulation either through migration of hydrocarbons generated within the formation or if they are in juxtaposition with effective source rocks. In margin areas, Olpad Formation is shallow and not mature enough to generate hydrocarbons and
juxtaposition with effective source rock may account for hydrocarbon accumulation in it. In the basin part however prospectivity will depend upon generative capacity of source within Olpad Formation itself. Therefore, one needs to assess source potential of the Olpad Formation in the area for exploration in deeper prospects.

Regional source distribution

Source rock identification has been done in Olpad Formation of 65 wells in Ahmedabad-Cambay-Tarapur blocks of Cambay Basin. Total organic matter content is good (avg. 1.8 %) in almost all the wells indicating that the Olpad Formation has received adequate amount of organic matter. However, source potential varies in different wells. Source sequences have been correlated along three N-S profiles: along eastern margin, in the central axial part and western part; one NEE-SWW profile in Ahmedabad block and one E-W profile in Cambay-Tarapur block (Fig. 1).

![Fig 1: Location of wells studied and profiles for source correlation](image)

Eastern Margin

In northern most studied well Limbodra-A, Olpad Formation is encountered at 971m and source rock is scanty in this well. However, in Limbodra-B, 90m fair to excellent source sequences for mainly gas have been observed in 820-970m. In Indrora field, Olpad is buried deeper and its top is encountered around 1670-1860m. In the three wells studied, Indrora-A, B and C source thickness of about 200-485m has been observed and it is just at the threshold of oil window whereas bottom has reached peak generation stage. The kerogen has predominant type III organic matter with some contribution of type II.

In Halisa field Olpad is shallow (~990m) and is devoid of source development. In Dahegam-A only a few streaks of source rock occur. Thick source sequences (130-185m) are present in Gamij field (Gamij-B, C and D) with fair generation potential. The section is immature to early mature. Olpad Formation is buried deeper (2227m) in Manjipura-A and is at early catagenetic stage. Seventy meters of source rock with good potential has been identified.
Thickness of Olpad Formation drilled in eastern margin of Cambay Tarapur Block is very little (23-118m) except in Uttarasanda-A where it is about 775m but that also lacks significant development of source rock

Central axial part

Fig. 2 shows variation of source distribution in central axial part of Ahmedabad Block. Olpad top is at about in 2500m in Wadu, Kalol and Wadsar fields. In Nawagam Olpad top is around 1800m and again goes down in southern part –Naika and Mahelaj to about 2100-2300m. In general, about 200m thick source development with fair potential is seen from Wadu to Nawagam, but in Naika-Mahelaj area source development appears to be poor. In Wadu, Wadsar and Kalol, top of Olpad is at peak generation stage and in Kalol-D which is drilled upto 4500m, bottom part (3542-4500m) is in gas phase. Since this area has already generated hydrocarbons, original potential of the source may be much higher.

In Nawagam area Olpad is in early to peak maturation stage. From geochemical analysis both accumulation zones and source facies have been identified in this area. It is also very well reflected in HI and Tmax values.

Western area

In Sanand field, Olpad Formation shows excellent source sequences (280m) in Sanand-C that are within the oil window. But Sanand-D located down dip does not have any significant source development. In Wslnalawa and Wsnakelya data control is not good enough to conclude anything. In Ambliyala-A about 800m Olpad has been drilled without any signature of source rock. Kolat-A and Asmali-B also lack source rock in drilled sections. In Piswada-A and Indernaj-A good source development (305 and 80m respectively) is seen that is within oil window. Fig. 3 shows a NEE-SWW profile through Wslnalawa-A, Sanand-C, Wadsar-A, Indrora-A and Halisa-A. There is no source development on the margins and improves in basinal part.

Cambay Tarapur Block

East west profile through Akholjuni-C, Cambay-A, Kathana-B & Siswa-A and North south profile in eastern margin in Cambay Tarapur Block show that in general thickness of Olpad Formation is low in these wells and no significant source rock development has been observed. Piswada-A and Indernaj-A on the western side however have encountered significant thickness of Olpad Formation which shows characteristics of good source rock in early to peak maturity state.

Characterisation of source sequences through bituminological studies

Bituminological data of Cambay Shale and Kalol Formations have also been taken along with Olpad for comparison. Gas chromatographic data shows that both Cambay Shale and Olpad sediments have dominant terrestrial organic matter deposited in peat coal environment whereas organic matter in Kalol Formation has more oxidising environment. From source specific parameters like abundance of C30 hopane compared
to C29 hopane, distribution of homohopanes, high hopane/sterane ratio, oleanane index and absence of gammacerane, all the sediments have dominant terrestrial input deposited in suboxic environment.
<table>
<thead>
<tr>
<th>WADU-A</th>
<th>KALOL-D</th>
<th>WADSAR-A</th>
<th>NAWAGAM-B</th>
<th>NAIKA-A</th>
<th>MAHELAJ-A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 2: Source correlation in central axial part of Ahmedabad block
Source Rock

<table>
<thead>
<tr>
<th>WASNALAWA-A</th>
<th>SANAND-C</th>
<th>WADSAR-A</th>
<th>INDRORA-A</th>
<th>HALISA-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Correlation along east west profile of Ahmedabad block</td>
<td>Source Correlation along east west profile of Ahmedabad block</td>
<td>Source Correlation along east west profile of Ahmedabad block</td>
<td>Source Correlation along east west profile of Ahmedabad block</td>
<td>Source Correlation along east west profile of Ahmedabad block</td>
</tr>
<tr>
<td>Accumulation</td>
<td>Olpad top</td>
<td>Source Rock</td>
<td>Accumulation</td>
<td>Olpad top</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1/(S1+S2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1/(S1+S2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 3: Source correlation along east west profile of Ahmedabad block
Characteristics of oils

The oils from Olpad Formation have API gravity varying from 20.8-43.3° with pour points in 21-42°C range and wax content varies from 6.6-24.9%. NSO content is in 6.55-13.06% range in Nawagam area whereas in Halisa area it is 16.53-20.83% range. Paraffinic nature of the oils is seen from componental analysis, percentage of saturate is 54.22-78.76% and saturate/ aromatic ratio is in 1.52-4.78 range.

Pristane/Phytane ratio in oils under study varies from 2.35-3.9. Contribution of terrestrial source input deposited in suboxic environment is indicated from isoprenoid to alkane ratios and shapes of chromatograms. Triterpane fingerprints are also indicative of terrigenous and/or microbially reworked organic matter. The sterane distribution of the oils is characterized by presence of C30 steranes (4-methyl-24-ethyl cholestanes) in mass chromatogram at 217m/z that is indicative of contribution of lacustrine input. Gammacerane is negligible in the oils and homohopane distribution shows a regular decrease from C31 to C35 indicating absence of highly reducing environment during deposition of organic matter. The oils are generated at early to peak maturity from various maturity indicators.

Oil source correlation

Biomarker data is not available for Nawagam oils, so oil-source correlation has been attempted only for eastern margin oils. Oil is being produced from Olpad Formation in eastern margin from Limbodra (2 wells), Halisa (4 wells) and Gamij (2 wells) fields. As

![Diagram](image)

Fig 4: Correlation between all the oils and extracts of Indrora-C and Walod-B is demonstrated by source specific parameters:

a) Oleanane Index vs pristane/phytane
b) C29/C30 hopanes vs C29Ts/(C29H+C29Ts)
c) C33R/C32R hopane vs C31R/C30 R hopane.
discussed above either source facies have not developed in these fields or they are not adequately mature to generate hydrocarbons. In Indrora, Walod area thick source sequences (85-750m) of moderate generation potential have developed in drilled sections of Olpad and Cambay Shale formations. In figure 4 source related parameters of both oils and bitumen have been plotted and correlation between the oils and extracts except Kalol extracts of Indrora-C and Walod-B is demonstrated.

From this it is inferred that Cambay Shale and Olpad source sequences have contributed to the oil accumulations in Olpad in eastern margin. The low in the west of the studied wells is having good thickness of Cambay Shale and Olpad formation and is buried deep enough to have adequate maturity matching those of oils. Thus the studies indicate that this low (fig. 5, after Mallik S) is the main kitchen and oil has migrated up dip to the eastern margin.

Conclusions

Source sequences have been identified in Indrora, Gamij, Wadu, Kalol, Wadsar, Nawagam, Sanand, Piswada and Indernaj. They are immature to early mature in Gamij, early- peak in Indrora, Nawagam, Sanand, Indernaj and Piswada, peak to post mature in wadu, Kalol and Wadsar.

Oils reservoir in Olpad Formation in eastern margin are sourced by Cambay Shale and Olpad Formation deposited in the low in the west of it.

In basinal part, adequate source is present for charging reservoirs within the Olpad Formation.