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Geostatistical Inversion -
the What, Where and Why?
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What i1s Seismic Inversion?
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Seismic Inversion

 Integration of well logs and seismic data with geological information
« Transformation of seismic traces to acoustic impedance and other rock properties
* A description of the earth through rock properties
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Seismic Data Acoustic Impedance
Shows contrast between layers Shows property value inside the layer
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What Do We Gain?

Advantages

= Removal of wavelet effects
= |ncreased resolution

= Reduced noise

= Calibration with wells

= Relationships with reservoir properties

Challenges

Requires a Low Frequency Model (LFM)
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Seismic Inversion: Methods
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Attributes >
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AVO/AVA
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Running Sum
Recursive Inversion
Colored Inversion

Deterministic
Inversion

.

Uncertainty
Quantification
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Elastic Impedance and its variants

Model Based Inversion
Sparse Spike Inversion
Simultaneous Inversion

Geostatistical Inversion

Bayesian Inversion

Geostatistical
Inversion

4D Inversion >

Multi Component >

AVOAz >

Full Waveform
Inversion

«



Seismic Inversion - Current Practices

Deterministic Stochastic

= Poststack = Geostatisticalinversion for high details
Single Partial Stack (Elastic Impedance)

Multiple partial stacks (Simultaneous)

= JointPP andPS inversion

= Uncertainty Quantification

«
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Limitations

Layer resolutionis limited by highest seismic frequency
Rich informationin wells are not fully utilized

Time [ms]
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Why Geostatistical Inversion?

The goal of geophysical inversion is to make quantitative inferences about the
Earth from noisy, finite data.

The limitations of noise and the inadequacy of the data mean that geophysical
inversion problems are fundamentally problems of ‘Statistical Inference”.

We do not invert data to find “models”,
Rather, weinvert data to make inferences about the model.

There will be infinity of models that fit the data. Thus we must lookto
probability theory to help.

(Scales & Sneider, 1997, Geophysics) “To Bayes or Not to Bayes”
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Why Geostatistical Inversion?

Subsurface petro-elastic models with high spatial resolutions (both lateral and
vertical) are needed at different stages of field life of a reservoir, e.g. well planning,
reserve estimation, flow simulation for predicting reservoir performance.

Geostatistical modeling using available well data is commonly used by modeler

and reservoir engineers with occasional use of deterministic seismic inversion
results.

None of geostatistical modeling or deterministic inversion fully qualify to provide
the high resolution requirements of both lateral and vertical directions.

Geostatistical inversion subsumes benefits of geostatistical modeling and
deterministic seismic inversion to provide highly detailed reservoir description.

«
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Beyond Traditional Seismic Inversion ...

Generate scenarios of the reservoir with
primary properties of interest V;{:\Iay Porosit

v'Facies

v Porosity, Vclay, Sw, K, etc.

- Permeability
* Pressure
rather than intermediate elastic properties
like Acoustic Impedance, Shear Impedance
and Density

[ Shale

Il Channelsand
I Cemented sand
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When Do We Need Geostatistical Inversion?

c
9
. Q A
= |mproved resolution S
— Depends on contrasts in elastic properties of different = =
facies S £ =
L2 38 o
. . E ES
= Data integration £ o
— Tighter and better integration as data scale issues are % g
handled properly Q<
= Capturing uncertainty
— Reduces uncertainty due to variance _5
— Allows for greater understanding of uncertainty due to %
bias é
— Require predictive reservoir model for flow c:cs ?
— simulation and history matching. 2 i
Q2 £
. . . . 5
For example, porosity co-simulated with acoustic 2 o
impedance from geostatistical inversion of full stack & :EL

data can serve as the porosity volume in static model.
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Create a Highly Detailed Reservoir Model by...

Tightly integrating all data in an unbiased manner
Petro/Rock Physics

< Ll

Core Geophysics Engineering
“ > >

r 3

I

Scale of Observation

Seismic Trends Production
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Workflows for Geostatistical Inversion: Scheme |

Statistical Reservoir Properties
Rock Physics Spatial Model

| |

Deterministic Inversion

Seismic Data

Singl _ ; Elastic to Reservoir - Conditional
( Ing'e Estlmatg ° Properties Transform Simulations of
Elastic Properties) Reservoir Properties

l

Multiple Realizations of
Reservoir Properties

After Bosch, M., Mukerji, T.and Gonzalez, E. F,2010, Seismic inversion for reservoir properties combining statistical
rock physics and geostatistics, Geophysics, 75, A165-176.
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Workflows for Geostatistical Inversion: Scheme Il

Statistical
Rock Physics

| |

Stochastic Inversion Multiple Realizati _ _
(Multiple Realizations of ultiple Realizations ofl, | Elastic to Reservoir

Seismic Data

Acoustic Impedance) Elastic Properties Properties Transform
Elastic Properties Multiple Realizations of
Spatial Model Reservoir Properties

After Bosch, M., Mukerji, T.and Gonzalez, E. F,2010, Seismic inversion for reservoir properties combining statistical
rock physics and geostatistics, Geophysics, 75, A165-176.
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Workflows for Geostatistical Inversion: Scheme I

Reservoir Properties Statistical. Seismic Data
Spatial Model Rock Physics

Elastic Properties to

Prior for . .
Reservoir to Elastic »[Seismic Data

Reservoir Properties Properties Likelihood Likelihood

\ 4

Multiple Realizations of Posterior of Reservoir
Reservoir Properties Properties

After Bosch, M., Mukerji, T.and Gonzalez, E. F,2010, Seismic inversion for reservoir properties combining statistical
rock physics and geostatistics, Geophysics, 75, A165-176.
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Deterministic Vs Geostatistical Inversions
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\Vernengo, L., Czeplowdozki, R. Trinchero, E., Sabate, A., Tsybulkina, E. and Morrillo, F., 2014 , Improvement of the
reservoir characterization of fluvial sandstones with geostatistical inversion in Golfo San Jorge basin, Argentina, The
Leading Edge, 33, 508-518.
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Frequency Contents from Deterministic & Geostatistical
Inversions

Frequency Contents from Deterministic & Geostatistical Inversions

Seismic Al (Deterministic) Al (Geostatistical)

Vernengo, L., Czeplowdozki, R. Trinchero, E., Sabate, A., Tsybulkina, E. and Morrillo, F., 2014, Improvement of the reservoir
characterization of fluvial sandstones with geostatistical inversion in Golfo San Jorge basin, Argentina, The Leading Edge, 33
508-518.
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Benefits of Geostatistical Inversion

= |mproved Resolution
— Modeling at fine sampling interval (e.g. 0.5ms)
= Uncertainty Quantification

— Bayesian inference integral part of the process

= Joint inversion of facies and elastic properties (P-impedance, Vp/Vs, Density)
= Results in stratigraphic grid

— Transfers easily to Corner Point Grid

. ReSl)J|tS directly in depth as well as in petrophysical/ engineering properties (Vclay, Porosity, Sw,
etc.
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Geostatistical Reservoir Modeling, Deterministic
Inversion & Geostatistical Inversion: A comparison

Geostatistical reservoirmodeling

Deterministic inversion

Geostatistical inversion

Interpolate between the wells

Plausible details v
Accurate near wells v
Not elsewhere %

Optimizes acoustic impedance to model seismic Accurate

within seismic bandwidth v~ Unrealistically smooth %
Only one possibility %

Subsumes geostatistical modeling and deterministic inversion
Does both simultaneouslyand in a statistically rigorous way
Multiple realizations at high detail (~ 1msx 25 m)

Yet coherent ‘interpretations’ up to ~ km scale

«




Geostatistical Modeling,
Simulation & Inversion
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Geostatistical Modeling: Estimation

Geostatistical Estimation is a “best-guess” given the Measured Data:
— Aims to minimize local error, as this is most conservative estimate.
— Means there is only one solution and it is unrealistically smooth.
— No objective measure to quantify “how wrong” the solution may be.

— Analogous to choosing “3.5” when asked to predict the roll of a dice.

True Reservoir Measured Data Geostatistical Estimation
(Unknown)
o 0.067
0.1600
0.063
0.131 'e)
O Oo.071

0 11]9
: o0.129

O0.105 0 0.132

«



25

Geostatistical Modeling: Simulation

For reservoir characterization and modeling, a “best-guess” is notgood enough:
— Need to have a model that is globally accurate and reflects geological patterns, not just local measurements.
— Willing to sacrifice some accuracy at any single location if it means globally have a more realistic model.

— Want multiple plausible solutions so that uncertainty in model maybe quantified.

True reservoir Simulation 1 Simulation 2 Simulation 3

)
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Objectives

Find the parameters of geostatistical models, viz. pdfs and variograms that give the desired
shapes and sizes in the simulation of discrete property types.

Uses geostatistical information from wells only, no information from seismic.

«
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Geostatistical Model

Properties

* Discrete Properties (DP), e.g. Facies

e Continuous Properties (CP), e.g., P-impedance, Porosity
Probability Distribution Functions (pdf)

* DP proportions

* CP pdfs: univariate, bivariate or multi-variate
Variograms: For both DP and CP

* Vertical Variogram - Type and parameters, e.g. exponential, range, nugget

* Lateral Variogram - Type and parameters including anisotropy azimuth

E
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Probability Density Function (PDF)

— From logs, we see that low values of Ip correspond to high values of @ and vice-versa
— But this information is not discernable from the two corresponding Histograms

P-Impedance Porosity P-Impedance Porosity

0.2 3

0.15—
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Correlation

= Correlation between two properties is discernable from a crossplot

= The correlation coefficient characterizes the linearrelationship between two properties

;Z(Ip_/’llp)'(¢_ﬂ¢)

corr(Ip, 4)= ~1.0<corr(Ip,¢)<+1.0
Oy 0,

Good linear relationship No relationship No linear relationship
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Spatial Continuity

All reservoir properties exhibit some degree of
spatial continuity.
Realistic reservoir models require to:
— Quantify the spatial continuity of a property from
measured data.

Variogram

— Reproduce the same spatial continuity in a simulation.

Variograms are a tool to get this done.
— Relates to the variability of the property as a function of the

_ Lag distance 5]

Lag distance, h

1
)/(h) = Evar[Z(u) N Z(u + hﬂ\ h: lag distance between

two spatial locations

E
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Characteristics of Model Variogram

Shape: slope at the origin.

— Smoothness of values

Range: distance at which the variogram reaches plateau.

— Maximum distance at which two pointsare correlated.

— Might depend on the direction (anisotropy).

Sill: the plateau the variogram reaches at the range.

— The sample variance of the property.

Nugget: discontinuity at the origin of the variogram.

— Micro-scale geological variation and measurement error.

Variability

I Nugget

Lag (Distance)

«
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Geostatistical Modeling

Geostatistical Modeling is done by fitting probability density functions (pdfs) and variogram models
to histograms and experimental variograms computed on input data (well logs, attributes maps,

trends, etc.).

Data Geostatistical Model

Pdfs Variograms

Discrete »

Continuous 1D .
+ Discrete Property

Continuous Property

Geostatistical Model Fitting

E
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Overview of Geostatistical Modeling

Numerical (digital) reservoir models are realizations of the Geostatistical Model

Geostatistical Model Realizations

Pdfs Variograms

Discrete

Continuous 1D
+

m&ontinuous 2D

Continuous Property

Simulation

«



34

Geostatistical Inversion Philosophy

Recognize that all inputinformation contains uncertainties

~ measureddatalike welllogs, seismicstacks and velocity
interpretations(petrophysics, horizons/faults, stratigraphy and

models /hypothesis (rock physics, depositional system, hydrocarbon provenance etc.).

Phrase the problem in probabilistic terms and solve it using advanced statistical techniques.

Generate multiple realizationsthat

"~ Honor all inputinformation.
~ Reflect the multiple sources of uncertainty.
"~ Give insight into what is known and what is not known about the subsurface.

E
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Components of Geostatistical Inversion

1. Geostatistical Modeling 2. BayesianInference 3. Sampling Posterior

Probability DensityFunction

Rock Physics Geostatistics Geology

Fluid contact Seismic noise .
Bavyes’' rule

Likelihood function

P(D|X |P(X|I ) 4= Prior pdf
P(D)

P(x|D.I) =
FPostenor pdf

\\
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Workflow: Three Elements of Geostatistical Inversion

Geostatistical Modeling Bayesian Inference Sampling of Posterior Pdf

—)

DATA (EVIDENCE)
Seismic Data & Wavelet =~ Well Logs

BAYESIAN INFERENCE

Transfer into
reservoir model
(CPG)

)
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Types and Algorithms

All geostatistical inversion methods use geostatistical modeling and Bayesian
inferences

Methods vary in using assumptions in geostatistical modeling and also in using
the method for sampling posterior probability density function.

Commonly used methods of geostatistical inversion use :

Sequential Gaussian Simulation (SGS) and

Markov Chain Monte Carlo (MCMC)

for sampling posterior pdf function obtained by combining the prior probability
with the likelihood functions.

«
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Geostatistical Inversion using Sequential Gaussian

Simulation

(]
Simulate a population of

elastic properties from well data
and previously visited nodes

Simulate another population of

Define a random path in the reservoir grid to
visit all nodes in sequence

1>

Compute synthetics
seeds

glastic properties using different

No Yes

Correlation > Threshold

Use the predicted property at current node as

pseudo well along with available wells and previously visited hodes
to simulate properties at next node in the random path

(§
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Geostatistical Inversion using Markov Chain Monte Carlo
Method

Evaluate P(seis
| synth*) using
noise estimate

. Evaluate /
. P(props* | geostats)

Generate B
randomly /

updated Compare with
props* P(props | geostats, seis)

iV
Worse?
Set props* as new /

/ current props E|ther
Start with

Wlth probability %
current
props \ or- P(props* | geostats, seis) "-

Do nothing L P(props | geostats, seis)

Compute
synth(props™*)

Multiply to obtain P(props*
| geostats, seis)

)



What i1s Good Geostatistical
Inversion?
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QC Geostatistical Inversion Results

An interplay of geostatistical model parameters, e.g.
i) Facies proportion,
ii) Property distribution per facies,
iii) Variogram type (exponential/Gaussian or non parametric)
iv) Variogram model (vertical and lateral ranges, anisotropy, nuggets, etc.) and

v) Seismic noise parameters

determine the quality of geostatistical inversion results.

Predict blind wells as closely as possible is one of the major objectives in parameter
optimization of geostatistical inversion.

E
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Blind Well Predictions

Select a discrete property section through blind wells and overlay the blind wells

Look out for good match for most of large scale features within seismic bandwidth
and several of small scale features within seismic bandwidth.

0
=]

g

=
Pay

Nompay

3

Pay

—
Norpay

Non-pay facies in the well has been masked for better comparison

«
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Examples of Different Qualities of Blind Well Predictions

Very Good

Almost all features, large or small
- a kind of an ideal situation!

Sand Sand |2

tranafiion

Shale Sha

Good
Most of large scale features and
several small scale features
match- features, large or small
match- a kind of desired case
with real data.

Shale water Sand HCSand |

«
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Examples of Different Qualities of Blind Well Predictions

m;:dt::l Blind well Poo r

2 EEEElTeREEEBEERE B Only a few of large scale and small scale features match-
=) a common situation during initial parameterization of a

I g ﬁ;«- . . . o o

- case with poor data quality or significant overlap of

5 properties. Needs careful parameterizations.

'.(_6 -

z

<
shah-,cs

<

n

ilind wells

Unacceptable W

Complete mismatch- something grossly
wrong. May need to restart with a
feasibility study and facies definition!

Shale water Sand HC Sand Limestone

!
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Blind Well Prediction — Match at Wells

Thick Beds Thin Beds

JASON JASON
Inv_noise7db\1_blind.wll ‘ Inv_noise7db\1_blind.wil Inv_noise7db\1_blind.wll Inv_noise7db\4_blind.wll Inv_noise7db\4_blind.wll | Inv_noise7db\4_blind.wll
2lithos_in | 2lithos_out -Impedance_in [kg/m~3*m/s = 2lithos_in 2lithos_out -Impedance_in [kg/m~3*m/s
0 = 4e+06 2 4e+06 5e+06
& 90 Lo o ‘ =
o e B e
) =
2 g 00
® 00 =
-9 ] c —
£ %’j 2 e
o 10 =
Z 5 —_— L
= Te
1820 é’f
Gmpr{:;‘—ﬂ 1830 =
o Green .—!_r
b {l _ 1840 : . R T —
T 1730 | L A : 1 y
: == -
& g 1850 =
: = : L
2 2
% :ﬁ % 1860 =2
% Green OWC %
Visnasasadadd = ="
Base Gréen I 1870 -3
?—\ Ij 1880 0 -
Resampled %j 1890 : %
Facies {25 _ : [ | %x
- i,_‘ tr‘ 1900 = greepowe - Greenowch 7
N :
HL\ aedlE Resampled g Inverted :iﬁ-
- - —
LN Facies & Facies 5

.. ) ) P-Impedance resampled at well
Compare results from realizations of different scenarios. P-Impedance from inversion at well

Thick sands should appear in all realizations but thin sand at any location
may appear and disappear across realizations.
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Match between Prior and Posterior Pdfs

Facies
o — .
] Nonpay Pay Prior

Posterior

Good match between prior and posterior
facies proportions

Prior and posterior pdfs of P-impedance of Pay facies

Posterior and prior

10 =
— posterior

— prior
08 posterior
~ prior

Good match between prior and 06
posterior pdfs of elastic property

PDF

8

04

02

20 25 30 35 40 45 5.8'0
pay.P-Impedance leb

E
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Examples of Prior/Posterior Match

Match between prior and posterior pdfs will imply that the shape of the two curvesand the mean, the
standard deviation and the asymmetry are close to each other.

Prior Posterior

(e il iewRemlizelian_1/P-|mpetiarce hor kar aheis in K2_b ———
whels K2_b PImpedence & pran

Not Acceptable

Acceptable

«
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Seismic Residuals: Assess Quality of Seismic Modeling

ason
— T pere=ro BERTRACE_RESULTS arnd pe—
3_resampled 4ST_resampled 1_resampled
3_resampled 4ST_resampled 1_resampled ! L
3 s, B J0 o e e 62 s6 sLo4s 41749 sl s os e T8 3 Po i 5 M 20 25 A om0 Ay 3 B35 w3 e I 3 R B
TR O 0 OV 0 O O 0 O 00 O s O 0 O O O ]| [ RO O O OO O O O 00 A0 O o O 0 0 O, 0 o <
= s 2 AP P PPt PR ¥ PO PP WPy PP TP e A
~ - ,“ 2
. v
s 15
- —
=05 Tt
=0 = Ta
. E =05
=
=,
s 15
e =
- —2
X Es

Geostatistical inversion (Gl) residuals should be incoherent and patchy. g - —

BT e e @ o2 ow s s & TR N e R
P o R R S S R S e S TR S RN B 0 R

Always compare these residuals with those from deterministic inversion

Gl residuals can be stronger than Dl residuals depending on input noise

Time (2]

level for geostatistical Inversion.

e s b i ) ol e ol

Coherent residuals may arise due to several factors, viz. in appropriate

wavelet, lower level of SNR used as input or even inappropriate stratigraphic Geostatistical Inversion Residuals

framework.
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Seismic Residuals: Assessing Quality of Seismic
Modeling

Cross Correlation SNR (dB)

Look for presence of any geological shape which will
mean that valuable informationin seismic has not been
modeled fully

Correlation values at well locations should be
comparable to the corresponding values obtained
during well to seismic tie and wavelet estimation

—-=
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High Frequency Content in Geostatistical Inversion

Look for high frequency information above seismic frequencies derived in geostatistical inversion
through geostatistical information, discrete properties etc.

The high frequency part of the spectrum should not look random.

mmmmmm _seismic.mod (Amplitude-frequency) Inv_noise7db_withPImp_mod' mod (Ampl

70 69 65 57 50 46 56 64 72 80 70 69 65 57 50 46 48 51 56 64 72 80
8 299 315 3 379 387 379 371 363 183 211 243 267 287 299 315 347 379 387 379 371 363
[ERRTEY PRI T e

Time-frequency [Hz]

A ' |

! :v ﬁ 0 0(/‘ V

Seismic | [ nwe, /tedlmpedénce%i« \ n/
VRS Wt . ol 0
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CSSI, Continuous and Discrete Properties

Compare with deterministic results to look for
e proportion of different discrete properties
* |ocation, shape and connectivity of sand bodies

P-Impedance
[kg/m~3*m/s]

6e+06

5e+06

4e+06

2lithos_in

pay

nonpay nonpay

JASON
INVERTRACE_RESULT S\inverted_impedance.mod
3 blind 3ST blind 4ST blind 1 blind
57 66 70 70 69 68 62 56 51 45 47 49 51 53 59 65 71 77 83 91
I139 171 191 215 239 259 275 291 299 307 327 351 375 391 383 379 371 36|7 359 351
L ! L1 1 11 Ll -

=

o

E

=

’ inv_Uncon_faviseed_5984\2lithos.hor )

B 1O I | e AN B ...
o

£

(=

inv_Unco;;\;\;t;;i.EM\P»lmpedance.hor

=

o

E

(=

P-Impedance_in
[kg/m~3*m/s]

6e+06

5e+06

4e+06
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Continuous Property with Blind Wells

JASON

P-Impedance
[kg/m~3*m/s]

5.6e+06

5.5e+06

5.4e+06

5.3e+06

5.2e+06

5.1e+06

5e+06

4.9e+06

4.8e+06

4.7e+06

4.6e+06

4.5e+06

-4.4e+06

4.3e+06

-4.2e+06

4.1e+06

de+06

3.9e+06

Time [s]

3 blind 3ST_blind
70
199

69 64 59
255 27I

Inv_noise7db_withPImp_mod\P-Impedance.hor

4ST blind

55 50 45 46 48 50 84 91
291 299 307 323 3¢|33 363 383 3!?7 383 379 375 367 363 359 351I

1_blind

51 54 59 64 69 74 79

\

\

'r

— ——
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Look for Plausible Geological Shapes on Maps

—] — o B —_— - —)

Geostatistical inversion derived seismic facies slices through the
reservoir (6 slices shown here)

RMS of seismic amplitude
over reservoir layer

Look for plausible geological shapes. Shapes observed in seismic amplitude RMS
maps should be clearly deciphered in geostatistical inversion results. Besides, subtle
shapes and geometries not mapped in seismic attribute maps should also show up.
Check for consistenc of these geometries with depositional setting.

(N
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Uncertainty
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What is Uncertainty?

No single model is correct !

No single model exists that accurately captures all the information contained in all

the disparate data used as input to reservoir characterization and modeling.

Providing estimate of the uncertainty of predicted rock property is as important as providing
accurate estimate of its most likely value.

Interpretation of inaccurate, insufficient and inconsistentdata
(Jackson, 1972, Journal of Royal Astronomical Society of London)

. (§




Sources of Uncertainty

Natural variability (variance)
Inherent randomness of natural processes.

Mathematical models cannot ever provide a perfect fit to natural phenomena.

Knowledge uncertainty (bias)
Lack of measured data.
Approximation of parameters.

Assumptions and simplifications of theoreticalmodels.

»



Uncertainty Estimation in Determining Inversion

Inverted acoustic impedance and/or Vp/Vs from deterministic

&

inversion are often interpreted using histogram/polygon

based body capture )
— Thresholding on histogram if only one inverted property o =
used il
- Polygon based capture of bodies, if two inverted properties wll .
are used simultaneously. e T ™ !
JASON Amberjack_Block109_201
EXTRA\cssi_ava_final\inverted_impedance.mod ...alefTightSand/WetSand/PaySa... P-Impedance
[gfcc*fts]

0CS-G_05825_A06 0CS-G_05825_AD6 0CS-G_05825_4 0CS-G_05825_1 0CS-G_05825_2

2381 2361 2347 2333 2337 2343 2349 2353 2350 2365 2369 2375 2379 2383 2387 2391 2395 2399 2303 2317 2329 2253 2255 2259 2261 2263 2267

6167 6187 6201 6215 6227 6241 6255 6260 6283 6207 6311 6323 6337 6351 6365 6379 6393 6407 6349 6363 6377 6269 6283 6297 6311 6325 6343
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Uncertainty Estimation in Determining Inversion

Polygon based capture of bodies. Geo-bodies captured by
polygon highlighting are shown in magenta in the section view

Captured body shape and size are sensitive to the range in
histogram or polygon used to highlight the bodies.
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Threshold based Body Capture
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Thresholding based on histogram range or polygon puts a hard boundary (barrier) to separate neighboring facies
Facies on either side of the boundary has a finite probability to belong to the other class.
This fact can be well recognized and handled through Bayesian classification
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Bayesian Inference: The Theorem

If P(A) and P(B) represent probabilities of occurrence of events Aand B respectively, then

The joint probability of occurrences of A & B is given by
P(A, B) = P(A | B). P(B)
=P(B | A). P(A)

which can be rearranged as

P(B | A). P(A)
P(B)

P(A | B) =

Now think of ‘A’ as the Facies and ‘B’ as theAcoustic Impedance (Al).

A\



Bayesian Inference: The Concept B
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Facies and Fluids Probabilities (FFP)

Facies and Fluids Probabilities (FFP) in Jason Workbench uses Bayesian inference to estimate facies
(and fluid) probabilities from deterministic inversion results

The estimated facies probabilities include the uncertainties arising out of overlap of properties among
different facies, limit of resolution of seismic data as well seismic noise

Uncertainty in the input data to FFP, e.g, the mismatch between measured and inverted P-impedance
at well location can be easily incorporated

Uncertainty in prediction of facies from deterministic inversion results can be quantitatively assessed
through Confusion Matrix

However, quantitative assessment of uncertainty are properly handled in geostatistical inversion which
works on the premise that all the measurement, experiments as well as interpretation processes have

inherent uncertainty

L«




Results from FFP

Posterior probability density provides the probability of each facies at a subsurface point
From probability density per facies, the most probable facies can be derived using the best score

sy Oil Sand Probability
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Confusion Matrix: A Quantitative Measure of Uncertainty

Consider that we have two facies, Pay and Non-Pay to be estimated from deterministic inversion
using Facies and Fluid Probabilities. Since we have facies logs already available in the wells in the
area of study, we can count the number of a particular facies encountered along the well paths from
FFP results and compare those with the real facies in the measured logs. There can be four different
cases at any subsurface location as explained in the table below

Estimated Facies

Pay Non-Pay

Here, occurrence of Pay is a positive outcome and not encountering Pay is a negative outcome. Thus,
we have the following nomenclature

Pay

Pay In reality estimated as Pay . True Positive (TP)
Non-Pay in reality estimated as Non-Pay : True Negative (TN)
Pay in reality estimated as Non-Pay : False Negative (FN)
Non-Pay in reality estimated as Pay . False Positive (FP)

L«



Metrics of Confusion Matrix

Precision = L
~ TP+FP

TP
Recall - =TpiFN
Accuracy = IP+TN

Y = (TP+FP)+(TN+FN)

2x(Precision x Recall

F1-score = ( );

~ (Precision + Recall)
2 1 1

Fl—score Precision Recall

TN

Specificity =

~ (FP+TN)

Precision: is fraction of correctly identified positive
cases out of total tested positive cases.

Recall: also called sensitivity is fraction of correctly
identified positive cases out of total real positive
cases.

Accuracy: is fraction of correctly identified cases out
of total cases

F1-score: accounts for both precision and
sensitivity

Specificity: is fraction of correctly identified
negative cases out of total negative cases

s X




Metrics of Confusion Matrix: Example

Effectiveness of facies estimation can be evaluated from various metrics of the confusion matrix

Well logs Facies Estimated from FFP
Facies

.. TP
Precision = TPTEP Pay Non-Pay
TP Pay 0.88 0.12
Recall =——=
TP+EN Non-Pay 0.00 1.00
Accuracy = TP+TN
y = (TP+FP)+(TN+FN)
~ (Precision + Recall) ’ Hay Non-Pay
2 . 1 1 Precision 0.30 1.00
Fl-score Precision Recall Recall 1.00 0.88
Accuracy 0.89 0.89
TN
s _ F1-score 0.47 0.94
Specificity (FP+TN) ore
Specificity 0.88 1.00

. (§
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How Do We Measure Uncertainty?

No such thing as a “true” uncertainty

It cannot be measured.

Best we can do is to capture the input uncertainties
Uncertainty in the data
— Measurement errors.
Uncertainty in the model
— Type of geological scenario.

— Parameters that defined a scenario.

— Limited amount of data.

E
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Total Uncertainty = Variance + Bias

Variance = natural variability

— Range of possible solutions for fixed input.
— Usually minor component of total uncertainty.

— We try to reduce the variance component of total uncertainty by including as much data from
different sources as we can (including the seismic data).

Bias = knowledge uncertainty
— Uncertainty induced by imperfections in the input

— Usually primary component of total uncertainty

— We try to capture the bias component of the uncertainty by trying different solid models,
variograms, proportions, noise levels, wavelets, etc.

Proper assessment of the total uncertainty requires an understanding of the
contributions of both variance and bias.

— Need to test not only different realizations, but more importantly different scenarios.

«
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Uncertainty from Variance

Probability Sp%
/ P (Reservoir |
k\/ Seismic, Geostats)

P (Geostats)

Probability Space

P (Wells)

P (Reservoir | Seismic,
Geostats, Wells)

P (Geostats)
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Uncertainty from Bias

Probability space

P(wells)

P(geostats)

P(reservoir | seismic, geostats, wells)

E
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Experimenting with Variance and Bias

Variance
— Estimated by varying random seed

Bias
— Proportions of discrete property type
— Variograms of the discrete properties- type and parameters
— Definition of discrete property — vary number of types
— Noise level of the seismic data

— Model — various horizon interpretation and number of layers
— Wavelet — different well combinations for multi well wavelets

E
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Variablility: Clear Distinction of Sand/Shale in Acoustic

Impedance

1 Realization 2

No Well Control Sand Shale

60

\/

P-Impedance

262

Realization 3

E
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Variability: Good Distinction of Sand/Shale in Acoustic
Impedance

No Well Control Sand  Shale

YN

P-Impedance

«
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Variability: Poor Distinction of Sand/Shale in Acoustic
Impedance

No Well Control Sand Shale

AN

P-Impedance

«
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Variablility: Poor Distinction of Sand/Shale in Acoustic
Impedance

With Well Control Sand Shale

k4 0 o 17
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Summary

Determining estimates of uncertainty is as important as determining the estimate of the property of
interest, itself.

Total uncertainty is composed of variance and bias. Multiple realizations give the variance and
multiple scenario yields the bias.

Total uncertainty in E&P is dominated by bias, not variance.

E



Analysis and Interpretation of
Geostatistical Inversion results
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Outputs from Geostatistical Inversion

Geostatistical inversion using StatMod/ RockMod results in multiple realizations (typical 30 or more)
of discrete properties and elastic/petrophysical properties.

For analysis and interpretation of results, the following statistical attributes are used:

— Continuous properties
* Mean,
* Minimum,
* Maximum,
e Standard deviation.
— Discrete property:
* Most probable discrete property type,

* Frequency of each discrete property type.

E
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Continuous Properties: Mean and Standard Deviation

Mean (of all realizations) volume averages out the high
details created in geostatistical inversion and can
serve a reference to QC the geostatistical results
against deterministic inversion results.

Mean SD Mean

Regions with smaller standard deviation implies
less uncertainty on the values compared to
regions with higher standard deviation.

P-Impedance

g 8 8 8 8 8 8 8 8 8
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Continuous Properties: Minimum, Maximum and Range

Minimum and maximum attribute volumes help Maximum
to recognize vertical or lateral trends in the data.
Range volume (maximum minus minimum, not
shown here) indicates total variation of property
at a location.

Minimum

P-Impedance

)
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Discrete Property - Facies Probabillity

Frequency of gas sands over 10+ realizations

Frequency of a particular discrete property (facies) " | from unconstrained inversion (blind wells)

at any voxel can be computed from the ratio of
number of occurrences of that facies to the total o
number of realization. If number of realization is
large, this (sample) frequency can be interpreted
as probability of occurrence of the facies at that
voxel.

o=

| g B
-—_>’ 1 ; i E :;9!-_'.'6'.::__
. | &

This provides valuable information to identify
and map areas with high probability of
occurrence of a desired facies, say hydrocarbon
sand. Additionally, it also captures the
uncertainty and associated risk.

Frequency of gas sands

(§
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Discrete Property - Most Probable Facies

Most frequently occurring discrete property
(facies) at any voxel is the facies that occurs
maximum times at the voxel across all the
realizations.

If number of realization is large, this (sample)
can be interpreted as the most probable facies
at that voxel.

This volume should always be interpreted
alongside the frequency of facies for meaningful
information and capturing the uncertainty.

1 from unconstrained inversion (blind wells)

Most frequently occurring facies over 10+ realizations

E
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Ranking: P10, P50 and P90 Realizations

We have so many realizations of property & Facies volumes, which one touse?

Ranking is a method for model selection and uncertainty quantification.
It provides a means to select few models from a large number of equally likely realizations.
A local and objective criterion is required for ranking so that can bea numerical value can be

obtained from each realization, e.g.,
* Proportion of pay at proposed well location X,
e Volume of pay thickness within 200 meters of proposed location X,

* Average porosity within selected local area.

Two primary uses
* For exploration objectives: uncertainty quantification,

* For production objectives: model selection.

«
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Ranking Procedure

* Define an criterion.
* Apply the criterion to all realizations and scenarios.
e Use the ranked results for uncertainty quantification and/ormodel selection.
What is a good criterion?
* Local measure of a key characteristic of the
* reservoir Expressible mathematically

Examples
* Proportion of pay at proposed location X (What will mywell encounter?).

* Volume of pay thickness within 200 meters of proposed location X (What will my well produce?).

* Average porosity within selected local area. (What is the reserve?)

E
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Rank the Realizations

Compute the criterion value for each realization.

2. Compute the mean and standard deviation of the
criterion values of all realizations.

3. Construct cumulative normal distribution function
(CDF) given the mean and standard deviation.

4. Evaluate this normal CDF for each realization.

5. Plot the resulting normal CDF.

Scenario
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Ranking in Exploration — Quantify Uncertainty

Question: What is the expected volume of pay connected to a
well, and how precise is this expected value?

Answer(s):

The expected volume is 0.9 million barrels.

There is 90% probability that this volume is lower than 1.3
million barrels.

There is 10% probability that this volume is lower than 0.7
million barrels.

Cumulative Probability Distribution

ol m

Expected Volume of Pay

)
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Ranking: Select Models

Question: Which realizations should we select for input to
flow simulator, based on a net pay criterion?

Answer(s) : Selected three realizations are

P10: Conservative scenario- probability of getting net pay values less
than that in realization #26 is 10% or alternately 90% of realizations
encounter net pay values more than that in realization #26

P90: Optimistic scenario- probability of getting net pay value less than
that in realization #12 is 90% or alternately 10% of realizations
encounter net pay values more than that in realization #12

P50: Most likely scenario- realization #5 has a net pay value that is less
than the value predicted by 50% of the realizations.

Cumulative Probability
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Applications of Geostatistical
Inversion:
A Pictorial Tour
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Detailed Reservoir Description

Inverted P-velocity (Geostatistical Inversion) Inverted P-velocity (Deterministic Inversion)

6 IS0 188 22 06 I N4 N 0 22
6 STO ST ST SW ST St S 4 S

Marquez, D., et al., 2013, Incorporating Rock Physics into Geostatistical Seismic Inversion — A Case Study, EAGE
London 2013.

pVetdc ity
qm/s]
9%

B0
=285

280
2]
=210

%0
2500
=550

50
250
2400
=830
]
=25
=200

=215

= 2100

)



" Solutions for Thin Sands — Highly Detailed and Realistic
3D Model

—
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 Thin (20-40’) Upper Morrow sands were identified from geostatistical simultaneous AVO inversion.
* High-detailed inversion results reflected the complex nature of fluvial reservoirs.

* Inversion results created “bottom line value” with successful drilling of additional wells and statistically
significant correlation to blind wells.
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Solution for Thin Sands Mapping

Mid-Continent Upper Morrow Sandstones

Upper Morrow fluvial sandstones of the
Mid-Continent are prolific oil and gas
producers

Fluvial sandstones (20-40’ thick) are
challenging to image on seismic data
Geomorphic shapes on stacked
seismic data suggest various fluvial
environments

21’ thick sandstone, IP = 10+ mmcfd

Zawila, J., et al., 2010, A case study for detecting thin Upper Morrow fluvial sands in the United States Mid-continent from
geostatistical simultaneous AVO inversion, SEG Expanded Abstract
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Solution for Thin Sand Units — Wara Formation

The Wara sandstone is composed of fine grained quartzose sands which are not well sorted and associated with fine- grained
siltstones and shales. The lower part of the Wara consists of gray, glauconitic and lignite shale with occasional fine grained
glauconitic sand.

The zone of interest is 150-200 feet thick with individual sand units being 3-50 feet thick.
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Al-Khaled, O., et al., 2012, Geostatistical Inversion in Carbonate and Clastic Reservoirs: Qilfield Case Studies from
Kuwait, GeoConvention, Expanded Abstract.
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Solution for Thin Sand Units — Wara Formation

Bungan Field (Wara Sandstone)

P-impedance (Deterministic Inversion) P-impedance (Geostatistic Inversion)
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Solution for Thin Sand Units — Wara Formation

Bungan Field (Wara Sandstone)

Vshale Vshale (Deterministic Inversion)
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Vshale from geostatistical inversion shows greater details comparedto deterministicinversion
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Solution for Thin Porous Limestone Units — Ratawi
Limestone

The Ratawi Limestone is composed of argillaceous mudstone to clean packstone to wackestone with some bioturbation.
Deposition was in a shallow shelf environment. With the reservoir thought to be developed in emergent shoals, banks and
bars.

The zone of interest is approximately 70 feet thick with individual porous units being 10-20 feet thick.
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Al-Khaled, O., et al., 2012, Geostatistical Inversion in Carbonate and Clastic Reservoirs: Qilfield Case
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Solution for Thin Porous Limestone Units — Ratawi
Limestone

Umm Gudair Field (Ratawi Limestone)

P-impedance P-impedance (Deterministic Inversion)
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Geostatistical inversion produces highly detailed results of P-impedance
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Solution for Thin Porous Limestone Units — Ratawi
Limestone

Umm Gudair Field (Ratawi Limestone)

Porosity Total Porosity (DeterministicInversion)
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Accurate Net Pay Prediction (Carbonate Reservoir)

Single realization Reservoir Probability from 20 Most probable (P50) lithology types
realizations

distribution based on 20 realizations
1
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Filippova, K., et al., 2011, Detailed geological model of Devonian reefs based on geostatistical inversion, 73th EAGE Conference &
Exhibition, Vienna.
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Well planning

Unsuccessful wells drilled on other results

Successful wells drilled on geostatistical
inversion results
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Successful Blind Well Test — Reservoir L2

High Probability

v
3
g
g
2

Reservoir Probability

Non-
Reservoir

Blind well
Reservoir
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Low Probability ‘

Rodina, O, et al., 2008, Detailed geological model of carbonate reservoir based on geostatistical AVA-inversion - A Case
Study: 73th EAGE Conference & Exhibition, Rome.
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Accurate Net Pay

Net pay
thickness [m]

Net pay thickness of Asselian-
Sakmarian interval

Well drilled before

® 30 seismic

O Planned well location

Corrected well location
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Reservoir Distribution and Connectivity

Frgedecs Thgw “ Yrmand

e e

Mean P-impedance from
Deterministic Inversion

Foguilane u.,..' Muwt!

Oil Sand probability from o "y
Geostatistical Inversion '

Ve i vl

Reservoir boundary and connectivity are better delineated in geostatistical inversion
compared to deterministic inversion reducing the risks of the prospects.

Vernengo, L., et al. 2014, Improvement of the reservoir characterization of fluvial sandstones with geostatistical
inversion in Golfo San Jorge basin, Argentina, The Leading Edge, 33, 508-518.
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Sand Probability from Geostatistical Inversion

1435 1421 1417 1482 1392 1382 1372 1362 1352 1343 1333 1323 1313 1303 1230 1283 1274 1264 1253 1244 1234 1226 1224 1222 1222 1224 122
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Y : Blind Well w“'rq “ BldeeIl 1‘

1410

1400 J

Very good correlation of high probability of sand at two blind wells that were not used
as constraints in geostatistical inversion building high confidence in using theresults.

Hoehn, M.H., et al. 2005, Combined Geostatistical Inversion and Simultaneous AVA inversion: Extending the life
of a mature area, Kotabatak field, Central Sumatra basin, Indonesia: Indonesian PetroleumAssociation (IPA)
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Geostatistical Inversion Maps Thin Sands

===

: | New Well
3D Seed Picking ;- K; o7¢ | Reservoir Thickness

-

.....

o

3D seed picking from ranked P50 volume based on realizations of porosity index, delineates
Good quality channel sands (~25ft) confirmed by drilling.

Hoehn, M.Het al., 2005, Combined Geostatistical Inversion and Simultaneous AVA inversion: Extending the life
of a mature area, Kotabatak field, Central Sumatra basin, Indonesia: Indonesian Petroleum Association (IPA).
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Using Gl Results in Drilling Horizontal Well

KB#119 Predrill Gamma Ray model  KB#81

Post drill results show good match between KB 281 well gamma ray logs and
predrilled sand probability from geostatistical inversion.

Hoehn, M.Het al., 2005, Combined Geostatistical Inversion and Simultaneous AVA inversion: Extending
the life of a mature area, Kotabatak field, Central Sumatra basin, Indonesia: Indonesian Petroleum
Association (IPA).
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Area of Study

Gas field, located Central Nile Delta ~150 km north of Cairo.
= Field characterized N-S to NW-SE trending 3-way dip structure.

= Late Miocene (Abu Madi Formation) lacustrine turbidite sheet sand and
shales.

= Reservoir zones are Upper Abu Madi (UAM) in northern closure and
Lower Abu Madi (LAM) in Sothern closure.

= Well B: drilled Oct 2008. Net pay = 33m, Av. Sw =40%, NTG = 54%.
Original reservoir pressure ~4750 psi.

= Well A: appraisal well to north - drilled in May 2010. Upper Abu Madi
(UAM) pressure was at near original pressure. Lower Abu Madi (LAM)
was depleted by ~1600 psi and water wet.

= Well C: appraisal to south - drilled in Aug 2011. UAM pressure was at
near original pressure. LAM was depleted by ~2000psi with gas bearing.

Hot colors = shallow depth
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Challenges

Lower Abu Madi (northern area), pressure being depleted. Why?

Northern Area SouthernArea
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A SS — XE well E [SSTVD] oo
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Hypothesis: potentially Lower Abu Madi in Northern area connected to Southern area

Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed
reservoir model through AVA geostatistical inversion,: ADIPEC, Abu Dhabi.
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Challenges

How to integrate seismic, well, and horizon into highly detail geological model?
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Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed

reservoir model through AVA geostatistical inversion,: ADIPEC, Abu Dhabi.
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Challenges

Generate highly detailed geological model by integrating seismic, well, core, and horizon data through
petrophysics, rock physics modelling and geostatistical inversion in order to understand reservoir
connectivity and pressure depletion of the field.

Data Set

Reprocessed seismic data 2012 produces six partial angle stacks,

(5-15, 10-20, 16-26, 22-32, 28-37, 33-42 deg.).

There are 6 wells processed through a consistent petrophysical analysis and

rock physics modelling.

Key horizons: Upper Abu Madi, Lower Abu Madi, Shale barrier.

E



113

Integrated Petrophysics and Rock Physics

A consistent elastic modeled logs achieved by integration of petrophysics and rock physics modelling.
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Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed reservoir
model through AVA geostatistical inversion,: ADIPEC, Abu Dhabi.
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Data Analysis — Which Elastic Parameters?

P-impedance and Vp/Vs discriminate sand and shale

022 § Sand
02 = e
0.18 2 - - .....
3 0.14 2 [
:ﬁ n,12§ ég
=] 3 s
“ig 01 ; g'
w 0.08 ; ==
0.06 § _I
0.02 g Hl
o3
S A
P-impedance [kg/m”3*m/s] P-impedance [kg/m”3*m/s]
Single stack seismic inversion produces Multiple partial stacks seismic
P-impedance only, unable to (simultaneous) inversion produces
discriminate sand and shale P-Impedance, Vp/Vs and Density ableto

discriminate sand and shale

Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed
reservoir model through AVA geostatistical inversion,: ADIPEC, Abu Dhabi.
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Analysis — Degree of Detalls

. . . Well A
Log resolution (0.5 ft resolution) shows thin sand and shale Cogresoiion | 05 ms resolution | Zmereseluion
|aye rS. 20 4730 4740 4750 720 4730 4740 4750 1720 4730 4740 4750

! il
| |
|

Deterministic Inversion provides results at the seismic

resolution and at 2 ms sample interval, and unable to

capture thin shale layer.

Final results need to be at 0.5 ms sample interval, to

enable modeling sand and thin shale layer.

e ——— E
. .
.

1 Ll

Geological model CPG (1-1.5m x 50m x 50m)

Sand Shale

T

Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed reservoir
model through AVA geostatistical inversion,: ADIPEC, Abu Dhabi.
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Input - Seismic Data

JASON
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Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed reservoir model
through AVA geostatistical inversion,: ADIPEC, Abu Dhabi.
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Results - Deterministic vs. Geostatistical

Comparison of P-Impedance from deterministic and geostatisticalinversion
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model through AVA geostatistical inversion,: ADIPEC, Abu Dhabi.

Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed reservoir
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Results - Deterministic vs. Geostatistical

Comparison of Vp/Vs from deterministic and geostatisticalinversion
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Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed reservoir model
through AVA geostatistical inversion,: ADIPEC, Abu Dhabi.
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Results - Deterministic vs. Geostatistical

Comparison of litho-type from deterministic and geostatistical inversion
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Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed reservoir
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Results - Co-simulation

Geostatistical inversion results co-simulated into engineering properties

o Effective Porosity from geostatistical inversion
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Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed reservoir
model through AVA geostatistical inversion,: ADIPEC, Abu Dhabi.
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Flow Simulation with P50 Realization

Well A Well B WellC WellD WellD  WellE Well A Well B WellC WellD WellD WellE

April, 2010

Sulistiono, D., Vaughan, R., Ali, M. and Rasoulzadeh, 2015, Integrating Seismic and Well data into highly detailed
reservoir model through AVA geostatistical inversion,: ADIPEC, Abu Dhabi.
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Conclusions

= Simultaneous geostatistical inversion produced multiple plausible models, enabled assessing uncertainty
and further ranking (P10, P50 and P90)the models for static reservoir description.

Tight integration of petrophysical analysis, rock physics modelling and geostatistical inversion

produced a highly detailed consistent geological model that predicted pressure depletion in Lower Abu
Madisand very well.
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Study Area

The oil field is located in the Western-Siberia oil and gas province, discovered in 1986 and in
production since 2003.

Up-to-date of this study, more than 10 exploration and 30 production wells have been drilled in
the area.

Oil saturated reservoir. BC10,,; (neokomian interval) is one of the main production unit.

It is a clastic reservoir, net pay varies from 5 to 18 meters and porosity from 15 to 17%.

E
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The Reservoirs and the Challenges

Scheme of BC10,,; reservoir bodies delineated from pre-stack
geostatistical inversion.

Four isolated bodies in layer BC10,,; have been identified.

Main BC102+3 reserves are in the Western zone (shown in yellow)
and is connected to the east with the feeding channel.

The second reservoir in the Eastern zone (shown in blue) is being
actively developed as part of the neighboring oil field.

No drilling done in other two reservoirs (Green and Red) in view of
high risk associated with their occurrence in structurally low area.

Geological model for flow simulation buildand tested for the main
reservoir.

Filippova, K., et al., 2013, Geostatistical Inversion as a Tool for the Accurate Updates of the Hydrodynamic Models —
Case Study: 75th EAGE Conference & Exhibition, London.
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BC10,,5; Reservoir Frequency Volume

Reservoir Frequency Section (depth domain)
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This section intersect yellow and blue reservoir bodies with different OWC levels.
It shows that BC10,,;reservoir has a tiled structure not shown in seismic or
P-Impedance from deterministic inversion

Filippova, K., et al., 2013, Geostatistical Inversion as a Tool for the Accurate Updates of the Hydrodynamic Models — Case
Study: 75t EAGE Conference & Exhibition, London.
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Geological Models

Model 1: Build mainly based on well log data and

general geological concepts in view of large
number of wells.

Model 2: Fully driven by results from pre-stack L/
geostatistical inversion d

B rcservoir distribution from
geological Model 1

reservoir distribution from
geoiogical Model 2

] = o = e o P -

The most significant differerice

Filippova, K., et al., 2013, Geostatistical Inversion as a Tool for the Accurate Updates of the Hydrodynamic Models —
Case Study: 75th EAGE Conference & Exhibition, London.
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Geological Models

Differences between Model 1 (traditional) & Model 2 (Geostatistical Inversion)

Structural Framework: Results of deterministic inversion were used to update interpretations of
top and bottom of the reservoir and structural framework for Model 2 was refined accordingly.

Areas away from the wells highlighted by purple circles exhibits major differences between Models 1 & 2.
Whereas Model 1 has minimal input from seismic (only horizons), Model 2 is fully integrated with seismic
data through geostatistical inversion.

The net pay map from the seismic driven model demonstrates a high degree of lateral heterogeneity in
the reservoir in the inter well space. Additionally, the reservoirs extend further towards east providing
the scope of identifying new locations to place horizontal wells.

«
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Flow Simulations

Two hydrodynamic modelling were built based on Model 1
& Model 2.

For Model 2, facies obtained from geostatistical inversion was
directly used.

Porosity was co-simulated from inverted P-impedance and
lithology volume.

Permeability was obtained through regression with
porosity.

For non reservoir section permeability was set to zero.
No additional modifiers were used for NTG and porosity.

Permeability modifiers were used as required but were much
smaller in Model 2 compared to Model 1.

Simulated values of total flow rate, total oil & water cut from
Model 2 match better with the observed historical data
compared to predictions from Model 1.

Oil-production rate, m*

Flow rate, m* per day

Water-cut, %

A) Total oil-production rate

—_—

~~ wmmm o||_production rate from Model 1
© O O Observedflowrate

msssm Oll-production rate from Model 2
2uue 2uUs 2006 200/ 2uus 2008 201 2011 2nm2

B) Total flow rate

1500 -

10004 = - /-MW
™ S
] \'r\f\/\-\px W= Flowrate from Model 1

{
’." © © O gbservedflowrate
ol === Flow rate from Model 2
T 2004 2005 2008 2007 2008 2009 2010 2011 2012

C) Total production water-cut

&
s

a

N
8

100

0] WEEEER \vater-cut from Model 1
an{ 0 O O Observed Water-cut
mmmm Water-cut from Model 2

40

20

2004 2005 2008 2007 2008 2009 2010 2011 2012

Filippova, K., et al., 2013, Geostatistical Inversion as a Tool for the
Accurate Updates of the Hydrodynamic Models —
Case Study: 75th EAGE Conference & Exhibition, London.
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Benefits

Benefits of a generic geostatistical inversion

— Highly detailed outside the seismic bandwidth.
— Geologically plausible shapes in reservoir properties.

— Estimates of uncertainty for risk assessment.
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Benefits: Detalls Beyond Seismic Bandwidth

Within seismic bandwidth both deterministic and geostatistical inversion agree but beyond seismic
bandwidth high details arises from geostatistical model

Seismic

Deterministic Inversion

200 m
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Benefits: Plausible Geological Shapes

Channels clearly visible Porosity through reservoir consistent with
depositional features

Porosity

)
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Benefits: Estimating Uncertainty

Very thin features come out slightly different across realizations,
capturing the associated uncertainty.
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Benefits

Additional benefits of geostatistical inversion using StatMod/RockMod

— Joint inversion of impedance and lithology

— Unbiased integration of data coming from disparate sources including vertical/ lateral as
well as 3D facies trend as prior

— Quick QC of a large number of realizations

«
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Benefits: Joint inversion of Facies and Properties

The distribution of lithology within a reservoir is a major sourceof uncertainty in modeling
reservoir properties.

Joint inversion of facies and elastic properties ensures consistency between the two.

Inverted P-impedance e Inverted Lithology

&\&&K
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RockQC: Quickly Analyse Multiple Realizations

Create template for QC, e.g. prior & posterior facies proportions, log views of facies,
section view of properties and properties in stratigraphic slices

Scroll through realizations and QC the results.
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Pitfalls of Geostatistical Inversion

Using poor quality well data

Bias can be introduced in petrophysical interpretation due to changes in i) log responses due tools of different
generation or companies, ii) different processing parameters, e.g. using different matrix densities for density
estimation, sand/shale base lines for calculating volume of shale, different water resistivity for Sw estimation. This
can result in poor integration of well and seismic data.

Noise in seismic data

Even though used as soft information and overall seismic data quality can be high, local issues like multiples,
acquisition foot prints, poor stacking or migration velocities can create bias restricting quality of geostatistical
inversion.

Inadequate well information
Number of wells or their distribution could be inadequate to capture the true geostatistical character of the whole
area. This can create bias in favor or against a particular facies. This may lead to estimation of high proportion of
preferred facies when applied to whole volume.

«
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Pitfalls of Geostatistical Inversion

Qutliers in data

Outliers in data (samples outside 2-3 times standard deviation from the mean) may
have major impact in defining the probability density function and spatial correlation
resulting in estimation of wrong parameters. Important to recognize data outlier or

samples from other population.

Trends in reservoir property

Presence of trend in the data violates the basic requirement of stationalj¥ statistical
process which demands mean of the data to be same if sampled from ditferent regions

Trend in properties should be recognized and removed from the data before
geostatistical modeling and then added back.

Wrong geostatistical model
Correct geostatistical model comprising spatial variograms, prior ﬁdfs and likelihood

functions are keY to success of any geostatistical inversion algorithms. Results derived
from wrongly selected geostatistical model, if not recognized and rectified, may lead to

incorrect interpretation of results.

&\&&K
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Pitfalls of Geostatistical Inversion

Amplitude & AVO pitfalls

Geostatistical inversion uses seismic amplitude or AVO information. As a consequence, several of pitfalls in
interpreting seismic amplitude and AVO will apply to geostatistical inversion, too.

E



Evolving Trends

Advanced Features of Geostatistical Inversion
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Faclies Ordering and Associations

Multi-level hierarchical facies Nested facies

Reservoir Layer Honor sequential ordering of the facies, e.g.

Nonpay Pay

Channel

Heavy oil
Gas

Multi-story Single-story

Levee
Tight
Loose

Level 2 Level 3

Overbank
Shale
Muck
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Geological Trends

Incorporate geological

trends Vertical probability trends built from the input facies logs to model

 Vertical Trends
« Lateral Trends

depositional changes

Depth Trend — Fining Upwards

« 3D Trends
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2D & 3D Trends

= Wells are usually drilled in good zones and proportions purely from wells can be biased

= Incorporating geological prior information may help in these cases

Shale probability map used as 2D trend

CETE 1000 m (Warking Acea)

Section View =]/
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Direct Inversion in Engineering Properties in Depth

Benefits of working in depth:

More intuitive

— Depth is natural domain for modeling
and simulation

— Easier to share information with
geologists and reservoir engineers who
ultimately own the reservoir model

More realistic facies features

- Resampling discrete properties from
time to depth can introduce artifacts and
discontinuities

Seismic data (time)

Velocity model (depth)

Log data (depth)

Rho Zp Phi
¥ ¥ s

e

AV NP AN

Y s

Y
A

!

Output properties (depth)

Lithotypes

P-Impedance

Porosity

e

Geostatistical

inversion in depth

Structural model (depth)

I

——

Synthetics/residuals (time)

Rock Physics model




Integration of Rock Physics in Inversion

Workflows

Mean Porosity Map over the Reservoir Layer

Lithofacies and Water Saturation Sections in Depth

Porosity

Lithofacigs

Water saituration Brine Sand

sov, | 00"

|Marquez., et al., 2013, Incorporating rock physics into geostatistical inversion: 75t EAGE Conference & Exhibition, London. |

!
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Evolving Trends

Use of Machine Learning Technigques in Seismic
Reservoir Characterization
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Deep Learning Driving Artificial Intelligence Boom

The concept of Artificial Intelligence (Al)
was first introduced by Turing in 1950. But
it was the uptake in the interest in
Machine Learning (ML) that began in the
1980s had helped its popularity and
especially adoption in geophysics

Starting 2010s, Al has boomed due to the
Deep Learning (DL) or Deep Neural
Network (DNN) breakthroughs

Especially after 2015, Al has exploded
due to availability of hardware (i.e., use of
GPUs) and software (i.e., open-source
libraries: Tensorflow, PyTorch, XGBoost,
etc.)

ARTIFICIAL
INTELLIGENCE

MACHINE
LEARNING

DEEP

- LEARNING
_ INA] = A
52

1950's 1960's 1970's 1980's 1990's 2000's 2010's (Copeland, 2016)

Copeland, M., 2016, What’s the Difference Between Artificial Intelligence, Machine Learning
and Deep Learning: Nvidia website.)
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What is Deep Machine Learning

0

ARTIFICIAL INTELLIGENCE

- - A technique which enables machines
Artificial Intelligence _ o - to mimic human behaviour
ﬂ'*}'»n -~
Machine Learning
P
= MACHINE LEARNING
********** Subset of Al technique which use
isti to enable
to improve with experience
Deep Learning
g DEEP LEARNING
SR e . o Subset of ML which make the
computation of multi-layer neural
network feasible
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https://www.edureka.co/blog/ai-vs-machine-learning-vs-deep-learning/
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Recent Use Cases of ML/DL Applications in Oil & Gas Industry

Petrophysics Rock Geology Seismic Seismic Quantitative Reservoir Reservoir Production/
Physics Imaging Interpretation Interpretation Modeling Engineering Monitoring

*Well Log P- & S- *Geological *Preprocess +3D Fault * Seismic *Reservoir  <History * Economics

DataQC & wave Tops Picking ing: Bad Extraction Facies Property Matching & * Reservoir

Conditioning Velocity & Correlation Data *Horizon Classification Modeling: Forecasting Performance
*Missing Log Prediction  «Stratigraphic Detection Picking, Top (Map, Vol.) Sw, * Formation Analysis

Prediction *Pore Sequence *Velocity & Base of * Petrophysical Effective Testing +*HSSE
*Petrophysical Pressure Interpretation Picking Salt Picking Property, Phi, Operation

Evaluation: Prediction <Borehole *Velocity *Seismic TOC, Facies Pressure, «Artificial Lift

Vel, N/G, Phi, *Geomech Image Modeling Facies Probability etc. Selection

Sw, Perm., anics Interpretation  <Image Analysis Prediction

etc. *Lithotype Processing +3D Geobody (Amp., Inv.)
*Facies Interpretation & Capture: Salt, +Seismic

Classification from drill Enhancem MTD, Inversion
*Missed Pay cuttings ent Channels, * Probabilistic

Predictionin *Increase etc. Facies

E&P Resolution *Microseismic Inversion with
*NMR & FMI *De-noise Analysis RP Model

Processing *De-multiple * Seismic &

Well
Integration
* In addition, ML is also applied in unstructured data extraction and interpretation ?";
—
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Recent Use Cases of ML/DL Applications in Oil & Gas Industry

Quantitative
Interpretation

*Seismic
Facies
Classification
(Map, Vol.)

* Petrophysical
Property,
TOC, Facies
Probability
Prediction
(Amp., Inv.)

* Seismic
Inversion

* Probabilistic
Facies
Inversion with
RP Model

*Seismic &
Well
Integration

Comparison of Facies Probability Maps from
DL and Simultaneous Inversio
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Mekup et al., 2017, Stochastic seismic inversion for static reservoir modeling, Annual
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Recent Use Cases of ML/DL Applications in Oil & Gas Industry
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Jensen, F., 2021, Machine learning for predicting stochastic fluid and mineral volumes in

Comparison of
stochastic modeling
results versus
machine learning
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results on a blind well
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agreement
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QI Technology Evolution from Linear Regression to Deep Learning

Input Hidden Output
layer layer layer
Al
A2 @ nputLayer @ Hidden Layer @ Output Layer
Qutput
A3
Ad

(Hampson et al., 2001)

TGDS-based RP
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Hampson, D. P. et al., 2001, Use of multiattribute transforms to predict log properties from

seismic data: Geophysics, 66, 220-236.




PETROPHYSICS

ROCK PHYSICS

STATISTICS

SYNTHETIC
MODELLING

NEURAL NETWORK
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Statistical Analysis

Elastic Log Simulations

Hybrid Theory-Guided Data Science (TGDS)-based Method for
Reservoir Characterization

Rock Physics Model (RPM)
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Prediction of Petrophysical Properties

Accuracy of prediction by
Deep Neural Network is
higher compared to first

generation Machine Learning
methods
Training Validation
Porosity Error Correlation Error Correlation
MLR 0.028 0.69 0.032 0.59
PNN 0.023 0.82 0.036 0.50
DFNN 0.019 0.86 0.030 0.70

MLR : Multi-linear regression

PNN : Probabilistic Neural Network
DFNN: Deep Feedforward Neural
Network




Proposed Approach for Deep Learning Applications

« Comprehensive data preparation: QC and validation, using various
available algorithms

« Test and select the optimal algorithms, we do not know the true
model!

* Review the output data and iterate

« Validate the results with data from other domains e.g., geology,
production, etc.

« Assess the limitations and risks of the output data before using them -
for follow on studies https://jpt.spe.org/statistical-modeling-vs-

machine-learning-whats-difference
« Use DL especially theory-guided to supplement physics-based
methods to optimize extraction of information and value addition from
all available data

* Human supervision is the key to success of DL application!

)
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