
Fundamentals of Seismic Tomography and Full Waveform Inversion  
Satish Singh 

Institut de Physique du Globe de Paris 
University of Paris City, France 

 
 
Seismic methods are most powerful methods to characterise the nature of sub-surface.  A seismic 
source is used to generate seismic energy. This seismic energy travels through the earth and get either 
reflected (scattered) and transmitted (propagation) through the earth and is recorded by set of 
receivers. Depending upon the source-receiver distance, we either record reflected energy and 
transmitted (refracted) energy. When the source-receiver distance is small as compared to the depth of 
the target, reflections are observed and when the source-receiver distance is large, refractions are 
observed. Seismic reflection method is used to obtain seismic image, commonly used for oil and gas 
exploration, whereas seismic refraction methods are used to determine large-scale velocity structures, 
mainly used by academic community to determine crustal and upper mantle velocity structures. 
Initially, these methods developed independently, but with the advent of modern acquisition 
technology, and the development of new theoretical methodology, the boundary between these 
methods have become less rigid. This is because, the physics of the seismic wave propagation and 
scattering is the same. I this course, I will take the advantage of these developments, and treat the 
seismic reflection and refraction problems together as a one problem. As industry professionals have 
extensive experience in seismic reflection imaging, I will not discuss seismic reflection imaging but 
mainly focus on refraction problems, while highlighting the link between reflections and refractions. 
This fits well with the development of tomography, based on arrival times, that first developed for 
refraction problems. On the other hand, the initial development in seismic full waveform started with 
the application to seismic reflection data, but its full potential was realised when it was applied to 
refraction data. So in this course I will cover the full offset range, from zero offset reflection to post-
critical reflections and refraction or turning rays. In order to establish this link, I will first introduce 
seismic reflection and refractions using rays, their subtility under different conditions, such as the 
presence of low velocity layers, high velocity gradient layers, etc for simple 1D case, then introduce 
link between waves and rays, introduce different methods to compute travel times, develop concept of 
travel time tomography, present different methods, their strength and weaknesses, how to obtain 
uncertainty in velocity models, and then introduce seismic full waveform inversion, basic theory, 
different methods of waveform inversion, basic requirements, and finally show some applications of 
these two methods to sub-basalt imaging and reservoir characterisation problems, and suggest how the 
method could be used for monitoring. As I come from academia, where I am used to teach students on 
black board, I will follow the same approach using slide, but the text below will form the backbone of 
the course, which students can use afterwards. 
 
Figure 1: Ray diagram for direct, refracted and reflected rays. 

 
 
 



 

 
 
Figure 2: An example combined seismic reflection and refraction data as a function of distance 
(horizontal) and time (vertical). Turning rays corresponds to refraction.  Reflection arrivals are also 
marked. Two ships, one carrying a 12 km streamer and another 6 km, were used to acquire 18 km 
offset data.  
 
Although I will come back to wave theory later, here I would like to introduce the acoustic wave 
equation, which is fundamental for seismic methods:  
 

 
 
where P is wavefield that propagates in the earth generated by source s, which could a dynamite or aur 
gun source. r, k are density and compressibility in the media. This equation can be solved using 
numerical methods or using ray theory.  
 
Basic Concept of Reflection and transmission 
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Snell’s Law (fundamental for seismic waves) 
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Horizontal slowness is constant along a ray path. 
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Different rays:  
 
Vertically propagating rays 
 
Turning rays 
 
Wide-angle reflection 



Basic Theory of Refraction Method 
 
The travel time of first arrivals are generally used in refraction study. In order to understand the 
tomography, it is important to start with simple two layers example. Here, I provide detailed 
mathematical description, so that students can understand the basic concept if they wish to, but in the 
class I will simply the discussion, and focus on the concepts and the main point.  
 
Two Layer Case: Let us assume that the crust beneath a refraction profile consists of two horizontal 
layers, with distinct and constant P-wave velocities 𝛼) and 𝛼( such that 𝛼(>𝛼). Energy from the 
source can reach the receiver directly through the top layer (direct wave), by reflection from the 
interface between the two layers, or travelling along the interface as a critically refracted wave or head 
wave. The head wave has a travel time corresponding to a ray, which has travelled down to the 
interface act the critical angle 𝑖* with the velocity of layer 1, 𝛼), and then along the interface with the 
velocity of the lower layer, 𝛼(, then back to the receiver, again at the critical angle with velocity, 𝛼). 
 
Recalling Snell’s law for two layers 
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When refracted angle i2=90°, the ray travels along the interface, and the angle is called critical angle, 
ic. It is called head wave or interface wave. Although the wave travel at the interface with velocity in 
the lower medium, the part of energy is transmitted in the upper layer, and travel at the critical angle, 
and arrive at the receiver.  
 

 
 

Ray diagram for reflected 
and refracted arrivals 



 
 

 
Direct waves: 
 𝑡 = +
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	 is straight line in the x-t plot. 

 
Reflected wave: Travel time 
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is a parabola. This equation forms the basis for velocity analysis in the seismic reflection imaging. 
 
Refracted or Head wave 
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Since i2=90°, sin 𝑖* =
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 from Snell’s law, and 
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Travel time 
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Travel time for reflected and 
refracted arrivals 
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This is a equation of a straight line with slope=1/𝛼( and intercept time  
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at x=0.  
 
Critical Distance: The shortest distance at which the head wave can be recorded is the critical 
distance, corresponding to critical angle, 𝑖*, when 𝑖(=90°, and AB=0, 
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The slope of the reflection parabola (tangent) can be defined as 
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At the critical distance, i1=ic, this slope is 
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At critical distance, the head wave is tangent to the reflection parabola (hyperbola). 
 
Crossover distance is the range at which the direct and head waves have the same time 

tdirect=theadwave 
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So based on the above information, we could determine the velocity in the first layer, second layer and 
the depth of the interface as follows: 
 
𝛼) = inverse of the slope of the direct wave for 𝑥 ≤ 𝑥*23!! 
 
𝛼( = inverse of the slope of the head wave for 𝑥 ≥ 𝑥*23!! 
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𝑡" 	is the intercept time. Once we know the intercept time, we could compute the depth z1. 



 
Multi-layer case: The travel times for a model consisting of n uniform horizontal layers of thickness 
𝑧4 and P-wave velocity 𝛼4 are determined in the exactly the same way as the two-layer model. The 
only extra matter to be remembered is that the rays bend according to Snell’s law as they cross each 
interface (i.e. horizontal slowness p is constant along each ray). The travel time for a wave refracted 
along the top of the mth layer is 
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 for 𝛼4 < 𝛼47). 
 
 
We cannot have two refraction arrivals at the same offset under normal circumstances. 
 
 
A low velocity sediment layer beneath high velocity basalt layer: A low-velocity layer cannot give 
rise to any head wave at its interface because the transmitted ray bends towards the normal. 
Furthermore, there are no critical angle reflections from an interface where the velocity contrast is 
negative.  
 
 
 

 
               for 𝛼) < 𝛼(                                          for 𝛼) > 𝛼( 
 

 
Therefore, the presence or absence of critical angle arrivals can be used to get some idea about the 
presence of a high velocity layer or low velocity layer. Note that the critical distance depends on the 
velocity contrast at the interface following the Snell’s law. 

Ray path when  
𝛼) > 𝛼( < 𝛼8 

 



 
 
Turning Rays: Another level of complexity arises when the earth is not layered cake and does not 
consist of thick constant velocity layers, but of very thin layers or velocity varied continuously. We 
will first examine a ray travelling downwards through a series thing layers, each of which is faster 
than the layers above. As discussed above, the horizontal slowness, also called ray parameter, p will 
constant along the ray 
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If the velocity continues to increase, the angle i will eventually equal to 90°, and the ray will turn 
back: 
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as for the layered case. If the layer thickness is infinitely small, or medium is continuous, we can 
obtain the travel time equation for turning ray 
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The horizontal slowness can also be defined as 

Travel time curve 
when  
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𝑑𝑡
𝑑𝑥 = 𝑝 

Which is the derivative of the time with respect to distance, slope of the arrival time. As we have 
mentioned that slowness (p) along the ray is constant, and hence the arrival time for a particular ray 
with slowness p would be constant: 
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This gives the distance of arrival for a particular p 
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And corresponding time for turning ray at p will be 
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If we define the intercept time as  
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Triplication: 
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Ray Theory 
 
Until now, we have studied the velocity variation with depth only, but the Earth is three dimensional, 
and therefore, we need to solve the problem in 3D. Unfortunately, there are no simple equations for 
3D. The simplest approximation of the wave theory is ray theory. In the ray theory, we assume that the 
wave propagation can be treated as set of rays of infinite thickness that are orthogonal to the wave 
fronts.  
 

 
Here we will first establish the link between wave theory and the ray theory. Therefore, we will start 
with a scalar wave equation 
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Fourier Transform  
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The wave equation becomes 
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(𝜙e(x, 𝜔) = 0 
Asymptotic ray theory (geometrical ray theory) 
 
 

ϕd(x, 𝜔) = 𝐴(x,ω)𝑒"?T(x) 
This equation suggests the wavefield could be decomposed of two parts, the amplitude term 𝐴(x,ω), 
which defines the amplitude of the wavefield and a phase term T(x), determine the arrival time. The 
amplitude term can be written in Ansatz form 

𝐴(x,ω)=M
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which suggests that the amplitude term 𝐴E(x) is independent of frequency and the contribution of the 
later terms in the Ansatz deceases rapidly for higher frequency, hence this is a high-frequency 
approximation. This means that this approximation is valid for high frequencies. The first term will be 
 𝐴(x,ω)≈𝐴>(x) or  

ϕd(x, 𝜔) = 𝐴>(x)𝑒"?T(x) 
which is the zeroth order solution of the wave equation. Substituting this equation in the above wave 
equation, we get 
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For the left hand side of the terms equal to zero, each term in the bracket must be equal to zero. The 
term multiplied by (𝑖𝜔)( will give: 

j(∇T(x))( −
1
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This equation is the eikonal equation, relating the time with velocity and is the equation of 
propagation of wavefront.  
 
In tomography, we mainly use the travel time, and hence here we will focus on the eikonal equation. 
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This equation could be solved using three different methods: 

1. Finite difference 
2. Shooting method  
3. Bending method 
4. Graph binning method 

 
Finite difference method: 
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This equation has two solutions 

∇T(x)=±
1

𝑣(x) 

In this computation, we only take the positive solution, which means the wave only propagates in the 
forward direction  
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Vidale, Geophysics, 1988.  



 
The eikonal solver is very efficient for computing travel time in 3D media, but the main problem is 
that it can mainly handle the first arrival, i.e., no reflections or triplications. Furthermore, since it is 
based on forward marching algorithms, it computes arrival times in shadow zones, that do not exist.  
 
Shooting Method: 
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We use analytical solution to solve the equation efficiently, and update using interpolation. The 
integration is carried out along the x=ray path. If ds is a small segment along the ray in a medium with 
velocity v, we can write the equation for ray tracing: 

𝑑x(𝑠)
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Differentiating the eikonal equation with respect to s 
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In numerical sense 
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These are the two common methods to compute the travel time in 2D and 3D earth.   
 

Tomography 
 

Once we can compute the travel time from a source to receiver, we can use the modern tomographic 
methods to estimate velocity models. While the computation of travel time is termed as a forward 
problem, the tomography is termed as an inverse problem. Before we talk about the inverse problem, 
we should first discuss the parameterization.  
 



Parameterization: The ideal case of solving any problem is to have number of unknowns (parameters) 
equal to the number of equations, then we can obtain all the unknown parameters from the given 
equations. The earth is not like that; there are cases we have only a few observations and a large 
number of unknown parameters, and in other cases, there are a large number of observations for only a 
few unknowns.  
 
 

 
 
Under parameterization when 𝑛(𝑚) ≪ 𝑛(𝑑) (e.g. Zelt and Smith, GJI, 1992) 
Over parameterization when 𝑛(𝑚) ≫ 𝑛(𝑛(𝑑) (McCaughey and Singh, GJI, 1997; Zelt and Barton, 
JGR, 1998; Hobbro et al., GJI, 2002).  
 
Other thing to consider is how to define model, using velocity (v), slowness u(=1/v), square of the 
slowness u2(=1/v2) depending up on modeling algorithm used. 
 
Inverse Problem:  
 
The objective of any inverse problem is to minimize the difference between the observed data (dobs) 
and calculated data (dcal) 

𝑆(m) = ‖𝑑3L! − 𝑑*MN‖5 
where m is a norm. For least squares case m=2. The misfit function S(m) could be non-linear and may 
have many minimums.  

 
The non-linear problems could be solved using global search algorithms, such as Monte Carlo, 
Genetic Algorithm, Simulated Annealing etc. However, for large-scale inverse problems, these 
techniques are very expensive, and hence we use local search techniques starting from an initial model, 
mc, which is close to the true model, i.e. lies in the global minimum.  



 
Weakly non-linear problem: Re-writing the travel time equation in terms of slowness 

t(x)=R 𝒖(x)
𝒓𝒂𝒚

𝒅x 

Where u(x) is the inverse of velocity or slowness. Let us assume that we have some idea of the 
slowness, u0(x), which is close to the true slowness by a small amount 𝛿𝒖(x), the we can write 

𝒖(x)=𝒖>(𝑥) + 	𝛿𝒖(x) 
Then the travel time in the initial model can be written as 
 

𝒕𝟎(x)=R 𝒖>(x)
𝒓𝒂𝒚
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The travel time in the perturbed medium will be 

t(x)=R (𝒖>(𝑥) + 	𝛿𝒖(x))
𝒓𝒂𝒚
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or 
 

t(x)-𝒕𝟎(x)=R (𝛿𝒖(x))
𝒓𝒂𝒚
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𝜹𝒕0(x)=A	𝛿𝒖(x) = A	𝛿m 
which is the data misfit. We can generalize this equation 
 

𝛿𝒎(x) = 𝒎(x)-𝒎*(𝑥)	 
and the travel time residual will be 

𝜹𝒕(x)=𝒕𝒄𝒂𝒍(x)-𝒕𝒐𝒃𝒔(x) 

𝐴"4 =
𝜕𝑡4
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which the derivative of the data with respect to the model. It is very difficult to minimize the data 
alone, as it would lead to a very unstable solution, particularly we have a large number of model 
parameters. In this case, we minimize the misfit function along with the model misfit function 

𝜓(𝛿𝑚) = 𝛿𝑡V . 𝐶W6). 𝛿𝑡 + 𝜆(𝑚 −𝑚>). 𝐶X6)(𝑚 −𝑚*) 
where the second term in the equation is the model misfit. 𝜆 is a constant, used to give different weight 
for model misfit function. We can write 𝑚 −𝑚> → 𝑚> + 𝛿𝑚 and expand the misfit function near the 
current mode	𝑚>  

𝜓(𝑚) = 𝜓(0) + 𝑙(0). 𝛿𝑚 +
1
2𝛿𝑚

V . 𝐻. 𝛿𝑚 
The first term is the data misfit 

𝜓(0) = 𝛿𝑡>V . 𝐶W6). 𝛿𝑡W 
The second term is gradient (first derivative with respect to model parameter) of the misfit function, 
defined as  
 

𝑙(𝛿𝑚) = −2(𝛿𝑡> − 𝐴𝛿𝑚)V . 𝐶W6)𝐴 + 2𝜆(𝑚> + 𝛿𝑚). 𝐶X6) 
The second derivate of the misfit function, called Hessian, can be written as 

𝐻 = 2(𝐴V𝐶W6)𝐴 + 	𝜆𝐶X6)) 
The minimum occurs when 𝜓(𝑚) = 𝜓(0), or the last terms equal to zero  
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hence the solution of the inverse problem lies at 

𝛿𝑚� = −𝑙(0). 𝐻6) 



Substituting the value of l and H, we find the solution of the inverse problem 
 

𝛿𝑚� = (𝐴V𝐶W6)𝐴 + 	𝜆𝐶X6))6)(𝛿𝑡>V . 𝐶W6)𝐴 − 𝜆𝑚>
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The model parameter could be estimated using single step solution or an iterative method.  There are 
different iterative methods, such as Newton method, steepest decent method, conjugate gradient 
method. In each method, we would require local gradient, which is also called Frechet derivative, at 
model mj and Hessian H, the inverse of which is difficult to compute.  
 
The above equation is a general equation for any inverse problem, e.g., seismic reflection, refraction, 
waveform inversion, and will appear time and again, in different forms.  
 
Under Parameterization Method (Zelt and Smith, GJI, 1992) 
 
Model is parameterized by a limited number of nodes, much less than the data. 
It is layered cake model. Each layer is divided into trapezoids.  

 
 
A trapezoid that has four boundaries in the z-x plan is defined by four velocities (v1, v2, v3, v4) at its 
corner where the distance between the nodes is  

𝑥 = 𝑥),			𝑥 = 𝑥(,			𝑧 = 𝑠)𝑥 +	𝑏),							𝑧 = 𝑠(𝑥 +	𝑏( 
 

 
 
which means only depth of the nodes vary, not the x-location. The constants, s and b, are predefined.  
 
The velocity in the trapezoid is  
 

𝑣(𝑥, 𝑧) =
(𝑐)𝑥 + 𝑐(𝑥( + 𝑐8𝑧+𝑐9𝑥𝑧 + 𝑐:)

(𝑐;𝑥 + 𝑐Y)
 

where the coefficient ci are linear combinations of corner velocities 
𝑐) = 𝑠((𝑥(𝑣) − 𝑥)𝑣() +	𝑏((𝑣( − 𝑣)) − 𝑠)(𝑥(𝑣8 − 𝑥)𝑣9) − 𝑏)(𝑣9 − 𝑣8) 

𝑐( =	𝑠((𝑣( − 𝑣)) − 𝑠)(𝑣9 − 𝑣8) 
𝑐8 = 𝑥)𝑣( −	𝑥(𝑣) +	𝑥(𝑣8 − 𝑥)𝑣9 

𝑐9 = 𝑣) −	𝑣( +	𝑣9 − 𝑣8 
𝑐: = 𝑏((𝑥(𝑣) − 𝑥)𝑣() − 𝑏)(𝑥(𝑣8 − 𝑥)𝑣9) 

𝑐; = (𝑠( − 𝑠))(𝑥( − 𝑥)) 
𝑐Y = (𝑏( − 𝑏))(𝑥( − 𝑥)) 



You could have layer boundary with different velocities or same layer by having velocity at the 
interface same. The main advantage of this parameter is that ray can be traced efficiently.  
 
Ray Tracing 
 

𝑑𝑧
𝑑𝑥 = cotan(𝜃),						

𝑑𝜃
𝑑𝑥 =

(𝑣- − 𝑣+cotan(𝜃))
𝑣  

 
for ray path near horizontal 

𝑑𝑥
𝑑𝑧 = tan(𝜃),						

𝑑𝜃
𝑑𝑥 =

(𝑣-tan	(𝜃) − 𝑣+)
𝑣  

for ray path near vertical,  
with initial conditions, 𝑥 = 𝑥>,			𝑧 = 𝑧>,			𝜃 = 𝜃>. 𝑣+	and	𝑣- are partial derivatives of velocity with 
respect x and z, 𝜃> is ray take off angle from the vertical.  
 
 

To 
 
Step length for the ray can be calculated as 

𝛿𝑙 =
𝛼𝑣

|𝑣+| + |𝑣-|
 

where 𝛼 is a constant.  
 
Ray take-off angle need to be assigned for different types of rays: 

 
The rays nearest to the receivers are used to interpolate the time at the receiver.  
 
Inversion 
 
Rewriting the travel time as 

𝑡 = R
1

𝑣(𝑥, 𝑧)Z
𝑑𝑙		or			𝑡 =M

𝑙"
𝑣"

#

"1)
 

After linearizing m = m> + ∆m	we can write 
A∆m = ∆t 
A is the partial derivative matrix, and can be calculated using  

𝜕𝑡
𝜕𝑣4

= R −
1
𝑣(Z

𝜕𝑣
𝜕𝑣4

𝑑𝑙	 

analytically using the definition of the velocity.  
 



They use a damped-least squares inversion, by adding an extra damping term that depends on the 
initial model, similar to the regulation term discussed above.  
 
They estimate uncertainly by perturbing one parameter at a time and performing the inversion.  

 
 
The advantage of this approach is that it is efficient, but the user has to define the nodes, give the 
initial velocity and gradient, and inversion only perturbs a limited number of parameters. So the 
method is very user based, and can be biased, i.e. no objectivity.  
 
In order to obtain unbiased inversion results, we would need to use a large number of parameters and 
regularized inversion. 
 
Regularised Tomographic Inversion for velocity and interface  
(McGaughey and Singh, GJI, 1997; Hobro et al., 2002) 
  
Parameterization: Fine grid parameterization both for velocity and interface 
 
Slowness squared and depth parameters are interpolated using a B-spline 
 

𝑢((𝑥, 𝑧) =M𝛽"[
2

"1)

(𝑥, 𝑧)𝑚" 

𝐷N(𝑥, 𝑧) = M 𝛽"W
!

"127)

(𝑥, 𝑧)𝑚" 

where 𝛽"[ and 𝛽"W are appropriate B-spines, and 𝑚" are the slowness squared and interface depth 
parameters, respectively.  
To allow the interfaces to move during the inversion, the velocities in the layers are defined so that the 
layers overlap (Figure).  The velocity across the interface could have a contrast. 
 



 
 
Recall the linearization  

t(x)=R (𝛿𝒖(x))
𝒓𝒂𝒚

𝒅x 

 
Recall the linearization 𝑢(𝑥) = 𝑢>(𝑥) + 𝛿𝑢(𝑥) 
 

𝜹t=R (𝛿𝒖(x))
𝒓𝒂𝒚

𝒅𝒙 

rewriting  
𝑢d𝜏 = 𝑑𝑥, we can get 

𝜹t=
𝟏
𝟐R

(𝛿𝒖((τ))
𝒓𝒂𝒚

𝒅𝝉 

The time due to small perturbation in the interface δ𝐷N will be 
δ𝑡 = Δ𝑝-E𝛿𝐷N(𝑥E) 

where Δ𝑝-E = (𝑝- − 𝑝-�), and 𝑝-, 𝑝-� are the vertical component of slowness vectors for the incident 
and transmitted/reflected rays at the kth interface. So the total perturbed travel time can be defined as 
 
 

𝜹t=
𝟏
𝟐R

(𝛿𝒖((τ))
𝒓𝒂𝒚

𝒅𝝉 +	MΔ𝑝-E𝛿𝐷N(𝑥E)
E

 

due to velocity and interface perturbations. A𝛅m = 𝜹t, where 𝐴"4=∂𝑡"/∂𝑚4 	is	the	partial	derivative.	
The	travel	time	and	the	partial	derviatives	are	computed	analytically	using	the	shooting	method	
discussed	above.	A	fan	of	rays	are	traced	as	discussed	above	at	neighbouring	points	and	then	are	
interpolated	to	obtain	the	time	as	well	as	the	derivatives	at	the	receiver.		
	
Velocity	and	depth	parameter	equalization:	
	
The	slowness	squared	and	interface	parameters	have	different	units,	and	the	partial	derivatives	
for	each	parameters	will	be	significantly	different.	Furthermore,	a	ray	will	cross	many	cells,	
whereas	it	would	interact	with	interface	only	a	few	times.	Thus	the	total	of	the	partial	
derivatives	with	respect	to	the	slowness	squared	will	be	much	greater	than	those	due	to	
interface	depths.		
	
To	address	the	problem	of	this	difference	in	units	and	sensitivity,	the	units	of	the	parameter	sets	
are	changed	so	that	the	equal	emphasis	is	placed	on	each	set	by	the	inversion.	A	correction	
factor,	w,	is	calculated	and	all	the	partial	derivatives	with	respect	to	depth	parameters	are	
weighted	by	it.	W	is	calculated	by	summing	the	absolute	values	of	all	the	elements	of	A	which	
concern	the	slowness	squared	parameters,	and	divided	by	the	sum	of	the	absolute	values	of	all	
the	elements	which	concern	the	depth	parameters,	



𝒘 = #
∑ ∑ ¬𝑨𝒊𝒋¬𝒓

𝒋1𝟏𝒊

∑ ∑ ¬𝑨𝒊𝒋¬𝒔
𝒋1𝒓7𝟏𝒊

 

 
Regularization 
 
As mentioned above, instead of minimizing the travel time misfit function, we include a regularization 
term that depends on the model 
 

𝜓(𝛿𝑚) = 𝛿𝑡V . 𝐶W6). 𝛿𝑡 + 𝜆(𝑚> + 𝛿𝑚). 𝐶X6)(𝑚> + 𝛿𝑚) 
When 𝜆 is large, the inversion will be influenced the initial model and when 𝜆=0, the inversion will 
mainly depend on the data misfit.  
 
Damped least-squares 
 
The second term can be replaced by 
 

𝜓WZ_ = 𝜆M𝛿𝑚"
(

"

 

 
At each iteration, it will produce solution, which is close to the previous solution in a least squares 
sense. This is simple to implement and is useful for course parameterization, but it is very sensitive to 
the starting model. Secondly, the inversion can become unstable as this tends to produce rough model. 
One can mitigate the problem by smoothing the gradient at each iteration, but this would be ad hoc 
and not very satisfactory. 
 
Regularized least-squires 
 
An alternative to the second term of the objective function is 
  

𝜓`Z_ = 𝜆‖𝑚 + 𝛿𝑚‖X(  
where the norm ‖. ‖X a differential property of the model (flatness or smoothness), and where this 
property is measured for the perturbed (new) model and is therefore independent of the starting model. 
This approach allows the model smoothness to be measured and regulated during the inversion (using 
𝜆) in a controlled and objective manner. 
 
There are two approaches: flatness and smoothness. To measure the extent of non-flatness, a 
measurement of first spatial derivatives across the model is used, giving 

‖𝑚‖a( = (𝑥( − 𝑥))R u
𝜕𝑚
𝜕𝑥 v

(+"

+!
𝑑𝑥 

For smoothness criteria, the second derivatives across the model is used,  
 

‖𝑚‖_( = (𝑥( − 𝑥))8R ®
𝜕(𝑚
𝜕𝑥( ¯

(+"

+!
𝑑𝑥 

Von Avendonk et al (1998) uses  

‖𝑚‖a( = R °𝐿b( u
𝜕𝑢
𝜕𝑥v

(

+ 𝐿[( u
𝜕𝑢
𝜕𝑧v

(

²
c

𝑑𝐴 

where LH and LV are horizontal and vertical smoothing length.  
 
McCaughey and Singh (1997) and Hobro et al. (2003) use the smoothness criteria 
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Similarly, one can have regularisation for the interface 
 

‖𝑚‖!d( ≈ R ³®
𝜕(𝑧
𝜕𝑥(¯

(

´
c

𝑑𝐴 

 
Variable smoothing approach 
 
The strength of the regularization is controlled by the variable parameter 𝜆. A high value will produce 
a smooth solution but higher travel time misfit whereas a low value will produce rough model, which 
if the inversion remained stable, will give a lower residual. The fit of the calculated traveltimes to the 
data traveltimes relative to the noise levels can be quantified by  

𝜒( =
1
𝑛 	𝛿𝑡

V . 𝐶W6). 𝛿𝑡 
where n is number of traveltimes used in the inversion. The optimum value of 𝜆 is that which results 
in 𝜒( = 1, producing the smoothest model, which fits the data to the level of the noise. The variable 
smoothing consists of starting with a high value of 𝜆 where the model is smooth and decrease slowly 
until the 𝜒( = 1.	 
 

 
 

 
Data Error 
 
We must have some idea about the data error. You could have picking error, depending upon the 
frequency of the signal and noise in the data. Near offset, far offset, first arrival, secondary arrivals etc. 
 
 



Optimization 
 
As mentioned above, we start from the starting model 𝑚>, which is close enough to the global model 
but far enough to provide unbiased solution. The model is updated 𝑚 → 𝑚 + 𝛿𝑚. Initially 𝛿𝑚	is set to 
zero. The updated model is obtained using different optimization methods, such as Gauss-Newton 
method, steepest decent method or conjugate gradient method. The basic rule is to update the model 
using a step length (𝛼) along a gradient direction (𝑑") 

𝛿𝑚" = 𝛿𝑚"6) + 𝛼"𝑑" 
 
The steepest descent direction will be the gradient direction 
 

𝑔" = j−𝑙
(𝛿𝑚"6))				𝑓𝑜𝑟	𝑖 > 1,
−𝑙(0)			𝑓𝑜𝑟	𝑖 = 1  

 
The conjugate gradient direction vector will be 
 

𝑑" = H𝑔" + u
(𝑔" − 𝑔"6))
𝑔" . 𝑔"

v 𝑑"6)				𝑓𝑜𝑟	𝑖 > 1,

𝑔)			𝑓𝑜𝑟	𝑖 = 1
 

 
The step length along the conjugate gradient direction will 
 

𝛼" =
𝑔" . 𝑑"
𝑑"V𝐻𝑑"

 

 
As you will notice that conjugate direction depends not only the current gradient but also on the 
previous gradient, and the convergence is faster, and the solution is more stable. 
 
Resolution and Error Analysis 
 
As we saw earlier with Zelt and Smith method, we need to be sure what we invert makes sense and we 
have some idea about the uncertainty in our results. If the misfit function has a Gaussian probability 
distribution, the posteriori co-variance matrix can be defined as an inverse of the Hessian matrix 
 

𝐶X = 𝐻6) =
1
2 (−𝐴

V𝐶W6)𝐴 + 𝜆𝐶X6))6) 
 
The diagonal term of this matrix will give the variance 

𝜎" = W𝐶X"" 
Off-diagonal term will give correlation  

𝜚"4 =
𝐶X
"4

W𝐶X""𝐶X
44

 

 
−1 ≤ 𝜚"4 ≤ 1 

Zero correlation means parameters are not correlated and ±1 means they are highly correlated. 
 
The inverse of the Hessian Matrix can be very expensive, but it is sparse matrix and hence can 
inverted using standard sparse matrix inversion, such as Gauss-Jordan method. 
 



 
 
Defining the rays 
 
Normal incidence data have very good lateral resolution, not vertical resolution. 
 
Turning rays have very good vertical resolution but very poor lateral resolution 
 
Wide-angle reflection has resolution both in vertical and horizontal directions. 
 
Pre-critical reflections 
 
 



 
Final model      Correlation 
 
 

 
Uncertainty 
 
Uncertainty using random models: 
 
Korenaga et al (2000, JGR) proposes to start from 50-100 random initial models and then perform 
linearized tomographic inversion. Assuming all the models converge to a solution, you will have a set 
of inverted models that will fit the data equally well and others may converge but may have larger 
traveltime residual. The average model can be defined as 

𝑚MK =
1
𝑛M𝑚" ± 𝜎 

 



where n is number of different starting models, mi is the different final models and 𝜎 is the uncertainty 
obtained from the posteriori co-variance matrix defined as 

𝐶 =
1
𝑛M(𝑚"

#

"1)

−𝑚MK). (𝑚" −𝑚MK)V 

and 𝜎" = F𝐶"" 
 
This approach assumes that the final solution of all the inversion results have a Gaussian distribution.  
 
 
 
 

 
 
Checkerboard Test: 
 
Other way to assess the resolution is to perform checkerboard test: 
 
Take the final inverted velocity model, add checkerboard with positive and negative velocity anomaly 
having small perturbation (2-3%) with the same size, compute travel time and perform the inversion. 
Then change the size of the anomalies and perform the inversion. This will allow you to get some idea 
of size of the anomaly that you can resolved as a function of depth. 
 
 



  
 
Ray Diagram 
 
You must plot a ray diagram to show in which part of the model rays have travelled. 
 
Hit Count: Number of times a ray travels through a cell. It does not contain any information on the 
direction or length of the ray etc. It allows to get a digital number telling something about rays and 
cells. 
 
Derivative Weight Sum (DWS)  
 
It is total weighted ray length in a cell (weighted sum of Frechet derivatives) 
The length of the ray is included, not the direction. It measures the ray density. 
 

 
 



Wave Equation Tomography 
 
So far we have picked the arrival times, leading to human error in picking. We do not take into 
account the type of wavelet, frequency of the data etc. A new method has been developed recently 
called wave equation tomography. It is based cross-correlation of real data with synthetically 
calculated data (Wang et al, 2014, GJI). Synthetic data could be computed using either ray theory or 
by solving the wave equation.  
 
Cross-correlation 
The cross-relation measures the similarly between two functions and can be defined as  
 

∅ef(𝜏) = R 𝑓(𝑡)𝑔(𝜏 + 𝑡)𝑑𝑡		
@

6@
			or	∅ef(𝜏 = 𝑛Δ𝑡) =M𝑓"

"

𝑔#7" 

Shift the second time series by 𝜏, multiply the two time series, and then add for all possible shifts.  
The cross-correlation is non-cumulative, i.e. 

∅ef(𝜏) = ∅ef(−𝜏) 
 
The cross-correlation can also be used to estimate the time difference between two signals. The 
maximum cross-relation will occur when synthetic data and observe data match perfectly: 
 

𝐶𝐶5M+(Δτ!2) = R𝑊(𝑡)𝑢!23L! (𝑡)𝑢!2
!g#(𝑡 + Δ𝜏!2)	𝑑𝑡 

 
Δ𝜏 is the time delay between the synthetic data and observe data, and W(t) is window in which the 
data are cross-related. The synthetic data, not just the time, but full wave field is computed solving a 
full wave equation using a numerical method (e.g. finite difference).  
 
In this case, you could define your misfit function 

𝑆(𝑚) = 	‖1 − CC5M+(Δ𝜏)‖( 
which is equivalent to 
 

𝑆(𝑚) = 	Δ𝜏V . 𝐶W6). Δ𝜏 
minimizing the time difference between the observed and synthetic data. 
Interestingly, the gradient of the misfit will contain the term 

𝑆h =M
1
𝑁22

𝑢	(̇ 𝑥2)Δ𝜏(𝑥2)𝛿(𝑥2) 

where the normalization factor Nr is 

𝑁2 = R 𝑢(𝑥2
i

>
)	�̈�(𝑥2)𝑑𝑡 

which means the waveform will also contribute to the inversion. The dots indicate the first and second 
order time derivative. 
The gradient will be of the form 
 

𝑔 = −2𝜌𝑣M R ∇𝑢 ∗ 𝑆h

i

>
!

𝑑𝑡 

Which again depends on the full wave field. 
 
 



 

 
 
Travel time tomography of reflection data:  
 
Although we have focused on refraction or turning rays, all the basics presented above is valid for just 
inverting the seismic reflection data only. The main difference is that we normally pick zero offsets 
two-way travel time, and the corresponding moveout of the reflection arrivals.  
 

Full waveform inversion of seismic data 
 
Until now we have learned about tomography that has been mainly based on travel time information, 
and hence provide low-resolution velocity structures of the sub-surface. Secondly, it is based on ray 
theory, assuming infinite frequency, but the real data have band-limited frequency. Thirdly, it is based 
on assuming only one type of wave, P-wave, but there are S-wave in the data. In order to shed light on 
the lithology of the subsurface (rock types, presence of fluids, melt, oil, gas etc) we need the 
quantitative estimation of P and S-wave velocities, anisotropy, attenuation etc.  
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Waveform inversion can address these problems as well provide quantitative image of the subsurface. 
Waveform inversion has been developed for refraction data (Chapman and Orcutt, 1985, Carry and 
Chapman, 19988) for one dimension earth model. Tarantola started the application of the full 
waveform inversion to reflection data in eighties at IPG Paris and made a significant progress 
(Tarantola, 1984, 1988) and set up the foundation of waveform inversion. The idea is based on 
minimising the misfit between data and synthetic in a least-squares sense. The idea has been applied to 
1D (Dietrich and Kormendi, 1989; Singh et al, 1991) and 2D problems (Crase et al., 1990). Here we 
discuss the basic theory of waveform inversion and show some inversion results and point out the 
strength and weakness of the waveform inversion.  
 
There are two main parts in inversion: Forward problem and inverse problem. In forward problem, 
there are two points to keep into consideration: model parameters and computation of synthetic data. 
In the inverse problem, we need to think about optimisation of a misfit between the observe data and 
synthetic data.  
 
Let us first setup the formalism for acoustic medium  
 
 

 

 
𝑘(𝑟)	and	𝜌	(𝑟) are compressibility and density in the medium,  is the pressure field and 

is the source. This equation can be solve using numerical methods, such as finite difference 
method either in the time domain or in the frequency domain, using finite element or spectral element 
method. Show 2D model. 
 
 
 Let us assume that the parameters are perturbed by a small amount 
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and effecting the wave field such that 
 

 
 
In this case the fields will follow 
 
 

 

 

 

 
 

 

 
The solution of these equations can be written as function of the Green’s function (g) 
 

 
 

 
 
The perturbed field can be expressed as  
 

 

 
Let us take only the term related to the compressibility 
 

 

Including the source term for the compressibility only 
 

 

or  

 

 
The gradient can be written as  
 

 

 
At the nth iteration, the perturbed wavefield can be written as 

k(r) = k(r)+δk(r), ρ(r) = ρ(r)+δρ(r)

P(r,t;rs ) = P(r,t;rs )+δP(r,t;rs )
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The first term in the above equation perturbed wavefield propagated backwards and the second term is 
the forward propagated wave field 
 

 

 

 
 
 
 
There are different methods to converge to the local minima:  
 

 
Newton, Quasi-Newton, Gauss-Newton, Steepest Descent, Conjugate Gradient methods. Here, we will 
discuss the conjugate gradient method. Starting from the initial model, m0, current model at iteration I 
can be written  
 
𝒎𝒊7𝟏 = 𝒎𝒊 + 𝜶𝒊𝒈𝒄(𝒎𝒊) 
 
where 𝜶 step length in the direction of conjugate gradient 𝒈𝒄(𝒎𝒊).  The first step of the gradient is 

𝑔)* = 𝑔) 
is steepest descent at the starting model. The conjugate gradient can be computed as  
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where 𝑔"* 	and	𝑔"6)*   are conjugate, and more stable and efficient. The step length can be computed as 
 

𝛼" =
𝑔" . 𝑔"*

𝑔"V𝐻𝑔"*
 

Parameters for inversion: 
 
Reflection coefficient depends on the impedance contrast across an interface, which can be defined as 

Therefore, one can parameterise the model either using (l,µ,r), (Vp, Vs, r) 
or (IP, IS, r). For long wavelength spatial inversion, (Vp, Vs, r) are the best parameters because they 
influence the travel time arrivals along with amplitude and phase. This is the case for wide-angle or 
refraction data. For short wavelength spatial variations, (IP, IS, r) are the best parameters for the 
inversion. Waveform of seismic reflection data contains only short wavelength structural information. 
However, if one wishes to invert both seismic reflection and refraction data simultaneously, one 
should invert for (Vp, Vs, r).  
 
These values can be replaced by the P and S-wave velocities as 
 

𝛿𝑉jÆ = 2𝜌𝑉k𝛿𝜆ÇÇÇ 
𝛿𝑉_Æ = −4𝜌𝑉_𝛿𝜆ÇÇÇ + 2𝜌𝑉_𝛿𝜇ÇÇÇ 

 
Starting model:  As mentioned before, the waveform inversion requires that the starting model gives 
travel time within a half of the period of the final model. Results from tomography could be used as 
starting model. Since waveform contains information on fine details (short wavelengths), the starting 
model should be smooth. For near offset data reflection or for very far offset refraction data, an 
acoustic approximation could be used, which means only P-wave velocity model is required. For 
elastic inversion, one requires information on P-wave and S-wave velocities and density. Since long 
wavelength information on density and S-wave velocity is generally not known, one uses some 
relationship between P-wave velocity and these parameters. For example, we have used the following 
relationship based on empirical formula (Gardener,1974; Hamilton, 1978, Shipp and Singh, 2002):  
S-wave velocity from P-wave velocity 

 

 
and density from P-wave velocity 

 

where density in kg m-3 .  
 
In nineties, the Tarantola’s group at IPG Paris carried out extensive work on waveform inversion, but 
the results were not very promising. The main reasons were the short offset and the wavelength gap. 
 
Sensitivity 
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IP = ρVp, and IS = ρVs.
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Effect of wide-angle data 

 
 
 
Synthetic example: 
 
 
 



 
 

 
 
Data redundancy: 
 

Figure: Synthetic inversion 
results. (a) True model (dashed) 
and starting velocity model 
(dotted) obtained after 
tomographic inversion. (b) Near 
offset (0-4 km) inversion results 
(solid line). (c) Inversion of 0-
12 offset data at same time. 
Long offset to near offset 
inversion strategy: (d) Inversion 
of long offset data (8-12 km), 
(e) 4-8 km and (f) then 0-4 km 
offset.  

Figure: Real, synthetic and 
residual data before and after the 
inversion. 



The data could be decimated either in the offset domain or in the frequency domain, which brings out 
the idea of performing the inversion in the frequency domain. Before we discuss the data redundancy, 
let us look at the relationship between the frequency and wave number. 
 
 

 
 
 

 
 
Using the Born scattering theory, we could easily derive a relationship between wavenumber that can 
be retrieved from a single frequency inversion (Virieux and Operto, 2009) 
 

k =
2𝑓
𝑐>
cos u

𝜃
2v
n 

where n is a unit vector in the direction of slowness vector.  This equation suggests that for one 
frequency and one aperture in the data space map to one wavenumber in the model space. And 
therefore, frequency and aperture have redundant control on the wavenumber coverage, and this 
redundancy increases with aperture coverage. Pratt et al (1996) used this idea to propose decimating 
this wavenumber-coverage redundancy in the frequency domain and developed a FWI of single 
discrete frequencies. This allows model seismic data one frequency at a time and perform single 
frequency at a time starting from low frequencies and increasing to higher frequencies. 
 
The wave acoustic equation can be re-written 
 



 

 
which in frequency domain can be written as 
 

Ê−
1

𝑘(𝑟)𝜔
( − ∇. u

1
𝜌(𝑟) ∇vË 𝑃

(𝑟, 𝜔, 𝑟!) = 𝑠(𝑟, 𝜔, 𝑟!) 

 
 

𝐵(𝑟, 𝜔)𝑃(𝑟, 𝜔, 𝑟!) = 𝑠(𝑟, 𝜔, 𝑟!) 
You could solve this equation for single frequency for all sources simultaneously, which can be solved 
efficiently, and then performed single frequency inversion. 
 
One should note that the misfit function: 

𝑆(𝑚) = ‖𝑑3L!(𝑥, 𝑡) − 𝑑*MN(𝑥, 𝑡)‖( = ‖𝑑3L!(𝑥, 𝜔) − 𝑑*MN(𝑥, 𝜔)‖( 
 
Because of the Parseval theorem 

R|𝑢(𝑡)|( 𝑑𝑡 = R|𝑢(𝜔)|( 𝑑𝜔 

As mentioned above, we can perform one frequency at a time for different sources simultaneously, 
which would make the inversion very efficient. 
 
But remember one frequency and one aperture will map to a one wave number. Note a single 
frequency corresponds to sine wave. If you look at the correspondence between single frequency and 
inversion of pre-critical reflection data, you will find that we will get one wave number. 
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Transmitted waves in frequency domain 
 

 
Pratt et al (1996) 
 
Note the lowest frequency is 0.5 Hz.  The source wavelets used in active source seismology 
experiments have a bandwidth of 4-70 Hz. If we had zero frequency, we could invert long wavelength 
structures. So there is a trade-off between offsets and frequency content. Longer the offset, better the 
constraints we have on long wavelength structures.  
 
Waveform tomography (Trace normalised waveform inversion) 
 
Both amplitude and phase of seismic data change with offset. The solution of the acoustic wave 
equation can be written as  
 

𝑢(𝑥, 𝜔) = 𝐴(𝑥, 𝜔)𝑒6"?l(<) 
Where A is amplitude and 𝜓 is the phase or travel time. The amplitude would vary with offset. 
For example, if you have shadow zone due to low velocity zone where amplitude goes to zero or high 
velocity gradient zone where one can have triplication, and the amplitude could very be large because 
of caustics. In the case of reflection, the reflection coefficient changes with offsets. However, when 
your amplitude is not reliable, e.g., different instruments may have different instruments response, 
local coupling etc., people normalise the trace, e.g., remove the effect of amplitudes. In this case, only 
waveform is fitted in the inversion, and it is called waveform tomography. Some people use the 
normalised cross-correlation function (similar to wave equation tomography), which contains come 
information about the wavefield.  Others applying a pre-whitening in frequency domain, and invert 
one frequency at a time, hence fitting the phase term only. 
 
 
 



 
Trace normalisation consists of normalisation a trace with the sum of the square of its amplitude, 
which is equivalent to energy term in a trace, defined as 𝐸"4 = ∑ 𝑢"4(<

<1> (𝑡) = Î𝑢"4Î
(, where i is source 

number and j is the receiver number. We can define the normalisation factor as ¬𝑢"4¬ = F𝐸"4.  If we 
define d data and u as synthetic, then misfit function can be written as 
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The gradient of this misfit function as function of velocity will be 
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So the adjoint source for the trace will be 		u =(&

o=(&o
− I(&

oI(&o
v, which is the normalised residual.  

 
 
Full waveform inversion 
 
In full waveform inversion we minimise the difference between observed and synthetic data in a least 
square sense 
 

𝐽(𝑚) =Mk𝑢"4 − 𝑑"4l
V

".4

k𝑢"4 − 𝑑"4l 

and gradient will be 
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The data residual, 𝑢"4 − 𝑑"4 , will be the adjoint source. 
 
 
Acoustic Versus Elastic 
 

 

 
 
Comparison between acoustic and elastic inversion: 
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Arnulf et al GJI (2014) 
 
 
Since full waveform inversion depends on the point-by-point difference between the observed data 
and synthetic data, anything that has not been modelled will map in the model. Here, we have mainly 
discussed elastic media, but the media could anisotropic, visco-elastic etc., and hence these effects 
should be taken into account to get accurate results, but this would increase the computation time, and 
therefore, most of the inversion are performed using acoustic approximation. 
 
In any case, full waveform inversion is most powerful method available to determine fine-scale 
quantitative structures of the sub-surface and is being developed/used both at local and global scale. 
 
3D localised full waveform inversion  
 
 
Sub-basalt imaging problems: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Elastic FWI 
 
 
 
 
 
Acoustic FWI 
 
 
 
 
 
Difference 


