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AVO THEORY
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AVO in Seismic Data

• AVO analysis is an extension of seismic amplitude analysis to include 
pre-stack data

• Amplitude analysis became possible in 1970’s when seismic  data 
was processed without AGC correction

• Gas identified as high amplitude ‘bright spots’

• Coal, tuning, basalt, carbonates, overpressure etc. all give brightspots too so AVO 
needed to differentiate

• Ostrander (1984) first to promote the use of AVO 
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Sources Receivers

2D & 3D Amplitude versus Offset (AVO)

CONCEPT

• AVO analyzes changes in 
amplitude of seismic waves 
that are dependent on 
source-receiver distance

• AVO deals with pre-stack 
seismic attributes for 
hydrocarbon discrimination
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An Example:  Stacked Section

Bright Spot
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AVO Example

CMP gathers from positions B & A respectively. Both the height & thickness of the bar graphs at 
the bottom are proportional to the relative RMS amplitude within the window  at 1.2 to 1.3s. At 
location B, the increase in amplitude with angle within the bright spot is consistent with the 
known presence of gas at this level in the survey area. At location A, amplitude variations are 
small.
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Elastic Waves at a Plane Interface
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Snell’s Law
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Mathematical Foundation
Zoeppritz Equations
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One of the basic assumptions about seismic data is that the 
seismic wave strikes the rock layer at vertical incidence. 
In this case, the  reflection coefficient is given as the following 
equation:
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Illustration of how the P-wave strike the boundary and split into 4 waves 
when it strikes at non zero incidence angle 

Mathematical Foundation
Zoeppritz Equations

1   1   1 
2   2   2 

 = P-wave velocity

 = S-wave velocity

 = Density

Reflected

Transmitted
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Mathematical Foundation
Zoeppritz Equations (1919)
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This equation (3) gives the final form of the Zoeppritz equation, and 
relates to the rays shown in previous figure.

(3)
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P-P Reflection Coefficient Formula
Exact Formula (Aki & Richards, 1980; Mallick, 1993):
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How do we simplify?

• Use average properties and changes in properties

• Assume changes in properties are small compared to average 
properties.

• The average properties define a background medium 
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Approximation to the Zoeppritz Equations:
Use average angles
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Approximation to the Zoeppritz Equations:
The Aki, Richard and Frasier Approximation
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Approximation to the Zoeppritz Equations:
The Smith/Gidlow Method
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Smith and Gidlow rearranged equation (4) in the following way:

(5)

They then chose to remove the dependency on density by using 
Gardner’s equation :

which can be differentiated to give :
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Substituting equation (7) into (5), we can re-express Aki and Richard’s 
equation as the following weighted sum of P- and S- wave velocity 
variations:

( )
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Rearrangement with two 
terms: Vp and Vs

Approximation to the Zoeppritz Equations:
The Smith/Gidlow Method
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(9)

Once the P and S velocities have been extracted, they can be 
combined in various ways. The first is termed ‘ pseudo Poisson’s 
ratio’, and can be written :

                     
Δ

- 
α

Δα

σ

Δσ




=

The second, termed ‘fluid factor’ is based on the ‘mudrock
equation by Castagna :

 = 1360 + 1.16  (10)

where α, β are in m/sec.

Approximation to the Zoeppritz Equations:
The Smith/Gidlow Method
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(12)

For a gas reservoir, we can define the “fluid factor” error from 
the following equation:

       1.16  -    F










 DD
=D

In other words, if ∆F =0, the reservoir is non-prospective, but if  
| ∆F |  0, the reservoir is prospective.

Approximation to the Zoeppritz Equations:
The Smith/Gidlow Method
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Real data example of the previous case for a line crossing an 
existing gas well :

. 

The cross plot between P-velocity against S-velocity  (Russel, 1998)

Wet sands, shales and 
also the gas sands 

display linear trend, 
but these trends are 

shifted relative to each 
other

Approximation to the Zoeppritz Equations:
The Smith/Gidlow Method
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Approximations to the Zoeppritz equations:
Fatti et al. (1994)

• Starting point is same version of Aki & Richards (1980) that 
Smith & Gidlow (1987) use:

• However, unlike Smith & Gidlow assumption is that Gardner’s 
relationship cannot be applied

• Instead they use P and S-wave acoustic impedances, Ip and Is
𝑅 𝜃
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Shuey (1985) gave a closed form approximation of the Zoeppritz’s
equations, as follows :
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Approximation to the Zoeppritz Equations:
Shuey’s Approximation

where σ = (σ1+σ2)/2  and  Dσ = σ2 – σ1

Previous approximations based on ,  and …. 
…..Shuey’s based on ,  and  (Poisson’s ratio)
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A comparison of Zoeppritz’s equations and its approximations for a simple gas sand model 
(Russel, 1998) 

Approximation to the Zoeppritz’s Equations

Ostrander Model
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The error for the negative reflector shown in previous slide (Russel, 1998) 

Approximation to the Zoeppritz’s Equations

Error at top interface
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2-term AVO Analysis

• Shuey Equation (approximation of Aki & Richards AVO equation)
R() = P + G sin2() 

= R0 +(R0-2Rs) sin2() 

• From AVO theory for angles < 30 degrees and Vp=2Vs

• Intercept, P = R0

• Gradient, G = R0-2Rs

• AVO Attributes
• Shear Reflectivity, Rs = (P-G)/2
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Shuey 2-Term AVO attributes

• Intercept, P

• Poisson Ratio Contrast
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Comparison of Linear (2-term) AVO Equations

• Assumptions
• tan2 = sin2 (OK for angles < 30 degrees)

• Vp = 2Vs

• Shuey R() = R0 +  (R0-2Rs)  sin2() 

• Smith R() = R0/cos2()   + 2Rs sin2() 

• Hilterman R() = R0cos2() +   2(R0-Rs) sin2() 
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Approximations to the Zoeppritz equations
Pan & Gardner (1985)

• Starting from Shuey, Pan & Gardner introduce a P-Wave modulus M and a 
Shear wave modulus m and rewrite in the form:

𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2

where
𝑦 = 𝑅 cos2 𝜃
𝑥 = sin2 𝜃

𝑎 =
1

4

∆𝜌

𝜌
+
∆𝑀

𝑀

𝑏 = −
1

2

∆𝜌

𝜌
+ 4

∆𝜇

𝑀

𝑐 = 2
∆𝜇

𝑀

AVO curve fit with parabola and solved for a,b and c. 
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Why 2-term AVO analysis?

• Robust on Noisy data

• Geometry limits useable angles to around 30 degrees

• Vp/Vs=2 assumption simplifies the interpretation

Limitations

• 3-term is more accurate but needs low noise and large angles!
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Both Zoeppritz’s and Shuey’s equations are dependent upon 
the incidence angle of incidence at which the seismic ray strikes 
the horizon of interest. 

Since the seismic data was recorded as a function of offset, the 
data must be transformed from the offset domain to the angle 
domain:

Offset to Angle Transformation

Offset Angle
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To transform from constant offset to constant angle, use the following equations :

   (21)                                
2
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z

Relationship between depth and 
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S R
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where:       θ = angle of incidence
X = offset
Z = depth
V = velocity (RMS or average)
t0 = total zero offset travel time
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Offset to Angle Transformation
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Effective angle of angle stack data
• Angle stacks can be inverted using the concept of the effective impedance, or angle impedance,  

at a constant angle of incidence. 

• Using angle reflectivity and angle impedance logs computed for the effective angle of the 
angle stack makes the application of the convolution model valid for inversion of the angle 
stacks

• The effective angle of the angle stack is the single angle corresponding to the unweighted 
arithmetic mean of the reflection coefficient over the traces in the angle stack. 

• As the reflection coefficient according to Shuey's approximation is approximately linear 
related to sin^2(q), the effective angle, qeff, is given by:

• min and max are minimum and maximum angle of the angle stack 

• The effective angle can be up to 16% larger than the arithmetic mean of the minimum and 
maximum angle of the angle stack.

( ) ( ) ( ) ( ) ( )
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sinsinsinsin
sin maxminmax
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Once we have transformed from offset to angle, we can use the
Shuey’s approximation, which is written :

R(θ) = Rp + G sin2θ (32)

where R(θ) = change of reflection coefficient with angle θ

Rp = P-wave reflection coefficient at normal incidence

G    = gradient term depending on change of Poisson’s ratio

An example of this curve plot is shown on next figure

Approximation of Zoeppritz
Shuey’s equation
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Example of the plot of amplitude versus sin2 θ

Approximation of Zoeppritz
Shuey’s equation
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Standard AVO Products
AVO Intercept

Conventional Stack

B A
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Gradient Displays

Gradient * Intercept

B AGradient superimposed on Intercept
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Limits of approximations
• Higher angles incorrect

• Near the critical angle the approximations are invalid

• Assume small changes in elastic parameters across 
boundaries so at large impedance contrasts, e.g. gas 
sands or carbonates, the equations go wrong

• So why do it?

• Most seismic was low incidence angle

• Ease of calculation

• Save computing time when repeating millions of 
calculations
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AVO model showing the effect of increasing Poisson’s Ratio and AI  (Russel, 1998)

Intuitive Development of the AVO Response
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AVO model showing the effect of increasing AI and decreasing Poisson’s Ratio (Russel, 1998)

Intuitive Development of the AVO Response
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AVO model showing decreasing AI and  increasing Poisson’s Ratio  (Russel, 1998)

Intuitive Development of the AVO Response
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AVO model showing decreasing AI and Poisson’s Ratio (Russel, 1998) 

Intuitive Development of the AVO Response
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Intuitive Development of the AVO Response
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Wet Gas
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Rutherford and Williams (1989) proposed that there were three
classes of gas-sandstone reservoirs, i.e :

Class 1 : high impedance gas-sands

Class 2 : near zero impedance contrast gas-sands

Class 3 : low impedance gas-sands

AVO Classification Scheme
Rutherford and Williams
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AVO Classes
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AVO Classes
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AVO Classes
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AVO Classes
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Class 1 Anomaly: High Acoustic Impedance Sands

Sandstone Class 1 has relatively high impedance than its
seal layer, which usually is shale. Interface between shale
and this sandstone will result relative high positive
coefficient reflection (R0) and a negative coefficient at the
base.

Usually this sandstone is found in coastal exploration area.
This sandstone is a mature sandstone which have
moderately to highly compacted.

AVO Classification Scheme
Rutherford and Williams
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Class 1 anomaly: A stacked seismic section on Hartshorn field. The productive interval 
corresponds to the dim out phenomena which highlighted in the figure. The dim out is 
caused by a change in polarity with offset of the Hartshorn reflection (Rutherford and 

Williams, 1989)

AVO Classification Scheme
Rutherford and Williams
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Class 2 Anomaly: Near-Zero Acoustic Impedance Contrast Sands

Sandstone class 2 has almost the same Acoustic Impedance as the
seal rock. This sandstone is a compacted and moderately consolidated
sandstone.

Gradient of sandstone class 2 usually has big magnitude, but
generally it’s smaller than the magnitude of sandstone class 1.

Reflectivity of sandstone class 2 on small offset is zero. This is often
blurred due to the presence of noise on our data seismic.

AVO Classification Scheme
Rutherford and Williams
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Class 3 Anomaly: Low Acoustic Impedance Sands

Sandstone class 3 has lower acoustic impedance than the seal
rock. Usually this sandstone is the less compacted and
unconsolidated sandstone.

On seismic stack data, sandstone class 3 has big amplitude
anomaly and reflectivity in the whole offset.

Usually, the gradient is significant enough but it has lower
magnitude than the sandstone class 1 and 2 during the RC’s
normal incidence angle is always negative.

AVO Classification Scheme
Rutherford and Williams
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Class 3 Anomaly: Migrated, stacked seismic section on Pliocene gas-sand in High Island Gulf of 
Mexico. The reflector of interest is between 2.3 s and 2.5 s (Rutherford & Williams, 1989)

AVO Classification Scheme
Rutherford and Williams
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Class 3 Anomaly: Panel display of constant reflection angle sections corresponding to the 
stacked data on previous slide. Each panel displays 2.0 s to 2,8 s of data 

(Rutherford & Williams, 1989) 

AVO Classification Scheme
Rutherford and Williams
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Class 4 Anomaly:

The fourth class of gas-sandstone is the anomaly with the
reflection coefficient becoming positive along as offset
increases, but the magnitude decreased as the offset
increases.

Sandstone class 4 often emerged when the porous
sandstone, which is overlain by lithology which have higher
shear wave velocity, such as hard shale (e.g : siliceous or
calcareous), siltstone, tightly cemented sand, or carbonate.

AVO Classification Scheme
Rutherford and Williams
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– Class I: Sands of greater impedance than the surrouding media where a dim-out is
present. 

– Class II: Sands of similar impedance than the surrounding media. Phase reversal

– Class III: Sands of lower impedance than the surrounding media. Bright spot

– Class IV: Low impedance reservoirs where magnitude decreases with offset (a sort of 
dim-out) 



Clase I

Clase II 

Clase III

Clase IV
0

0,1

-0,1



R()

AVO Classification Scheme
Gas-Bearing Sands Classification
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• Hydrocarbon

• Coal

• Improper amplitude balance

• Fizz water

• Overpressure 

• Lithology change

• Improper NMO

• Improper migration

• Tuning

• Frequency imbalance (between near and far stack)

• Multiples

• Noise

• Edge effects (refraction at low angles< 35o)

Possible Causes of Amplitude Anomalies 
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AVO attributes are quite useful in interpretation:

• Increase reservoir evaluation

• Helps to understand the relationship between rock and
fluids natures

• Play role in hydrocarbon delineation

However, there are a number of pitfalls:

• Transmission losses can change as a function of offset
due to large velocity contrast above target

• Inadequate AVO data processing: often processing done
to create an optimal stacked section will make it
unsuitable for AVO analysis (trace scaling/balancing on
prestack gathers)

AVO Analysis - A Word of Caution
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(after Downton et al, 2000)

The Wabanum and Ireton reflections show amplitude decrease with offset.
However, offset dependant transmission losses occur above on Banff and
Wabanum interfaces where high velocity contrast take place.

AVO Analysis - A Word of Caution
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Effect of tuning on AVO

Tuning effect of a class 1 AVO anomaly from a gas reservoir with low porosity and high impedance: (left) synthetic 
gathers with varying reservoir thickness, and (right) extracted amplitude at the top of the
reservoir. The overlying logs on CMP gathers are gamma ray (yellow) and P-impedance (red). The CMP gathers were 
muted at 45°. The AVO character has a significant change when the thickness reduces to 10 m.             

Li et al., 2007


